1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
|
/*
* gretl -- Gnu Regression, Econometrics and Time-series Library
* Copyright (C) 2001 Allin Cottrell and Riccardo "Jack" Lucchetti
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "libset.h"
#define DPDEBUG 0
#define IVDEBUG 0
/* Populate the residual vector, dpd->uhat. In the system case
we stack the residuals in levels under the residuals in
differences, per unit. Calculate SSR and \sigma^2 while
we're at it.
*/
static void dpanel_residuals (ddset *dpd)
{
const double *b = dpd->beta->val;
double SSRd = 0.0, SSRl = 0.0;
double x, ut;
int i, j, k, t;
k = 0;
for (i=0; i<dpd->N; i++) {
unit_info *unit = &dpd->ui[i];
int ndiff = unit->nobs - unit->nlev;
for (t=0; t<ndiff; t++) {
/* differences */
ut = dpd->Y->val[k];
for (j=0; j<dpd->k; j++) {
x = gretl_matrix_get(dpd->X, k, j);
ut -= b[j] * x;
}
SSRd += ut * ut;
dpd->uhat->val[k++] = ut;
}
for (t=0; t<unit->nlev; t++) {
/* levels, it applicable */
ut = dpd->Y->val[k];
for (j=0; j<dpd->k; j++) {
x = gretl_matrix_get(dpd->X, k, j);
ut -= b[j] * x;
}
SSRl += ut * ut;
dpd->uhat->val[k++] = ut;
}
}
if (gmm_sys(dpd)) {
/* we could attach these to the final model */
#if 0
fprintf(stderr, "nobs (diffs) = %d\n", dpd->ndiff);
fprintf(stderr, "SSR (diffs) = %g\n", SSRd);
#endif
dpd->nobs = dpd->nlev;
dpd->SSR = SSRl;
} else {
dpd->nobs = dpd->ndiff;
dpd->SSR = SSRd;
}
if (dpd_style(dpd)) {
dpd->s2 = dpd->SSR / (dpd->nobs - dpd->k);
} else {
/* xtabond2 always uses differences for this? */
dpd->s2 = SSRd / (dpd->ndiff - dpd->k);
}
}
/*
This is the first thing we do for each panel unit: construct a list
holding the usable observations. A usable observation is defined
as one for which we have all the data for the equation _in levels_.
The list of good observations takes this form: the first element
gives the number of good observations and the following elements
give their positions, i.e. the 0-based places relative to the start
of the time-series for the unit. While we're at it we record the
positions of the good observations relative to the full dataset,
in the big array dpd->used, so that we can place the residuals
correctly later on.
(Note that @t0 gives the offset in the full dataset of the start of
the unit's data.)
We return the number of "good observations" minus one, to allow
for differencing; the return value (if positive) will be the
max number of observations that are actually usable.
*/
static int check_unit_obs (ddset *dpd, int *goodobs,
const DATASET *dset,
int t0)
{
const double *y = dset->Z[dpd->yno];
int i, s, t, ok;
goodobs[0] = 0;
for (t=0; t<dpd->T; t++) {
int big_t = t + t0;
/* do we have the dependent variable? */
ok = !na(y[big_t]);
/* and lags of dependent variable? */
for (i=1; i<=dpd->laglist[0] && ok; i++) {
s = t - dpd->laglist[i];
if (s < 0) {
ok = 0;
} else {
ok &= !na(y[s+t0]);
}
}
if (ok && dpd->xlist != NULL) {
/* and regressors? */
for (i=1; i<=dpd->xlist[0] && ok; i++) {
ok &= !na(dset->Z[dpd->xlist[i]][big_t]);
}
}
if (ok) {
goodobs[0] += 1;
goodobs[goodobs[0]] = t;
if (goodobs[0] > 1) {
dpd->used[big_t] = 1;
} else if (gmm_sys(dpd)) {
dpd->used[big_t] = LEVEL_ONLY;
}
}
}
ok = goodobs[0];
/* allow for differencing (but don't set ok < 0) */
if (ok > 0) ok--;
return ok;
}
static void copy_diag_info (diag_info *targ, diag_info *src)
{
targ->v = src->v;
targ->depvar = src->depvar;
targ->minlag = src->minlag;
targ->maxlag = src->maxlag;
targ->level = src->level;
targ->rows = src->rows;
}
/* diff_iv_accounts:
On input tmin should be the first available obs in levels;
tmax should be the second-last available obs in levels
(in each case, for any unit). These indices are based at 0
for the first period in the unit's data, and they
represent the subtractive terms in the first and last
feasible observations in differences, respectively.
minlag and maxlag represent the minimum and maximum
lags that have been specified for the given instrument.
These lags are relative to the "base" of the differenced
observation, that is, the x_t from which x_{t-k} is
subtracted to form a difference. With non-gappy data
k = 1 (the differences are x_t - x_{t-1}) but with
gappy data we may have k > 1 for some observations;
nonetheless, we "impute" a difference-base index of
(the subtractive term's index + 1). This ensures
that we don't use level instruments that are entangled
in the difference they are supposed to be instrumenting.
*/
int diff_iv_accounts (ddset *dpd, int tmin, int tmax)
{
int t, tbot, ttop;
int k, i, nrows = 0;
tbot = tmin + 1;
ttop = tmax + 1;
#if IVDEBUG
fprintf(stderr, "*** diff_iv_accounts: tbot = %d, ttop = %d\n", tbot, ttop);
#endif
for (i=0; i<dpd->nzb; i++) {
int minlag = dpd->d[i].minlag;
int maxlag = dpd->d[i].maxlag;
int usable_maxlag = 0;
int tbase = tmax + 2;
int ii, itot = 0;
dpd->d[i].rows = 0;
#if IVDEBUG
fprintf(stderr, "GMM spec %d, incoming: minlag = %d, maxlag = %d\n",
i, minlag, maxlag);
#endif
/* find tbase = the 'base' of the first differenced observation
for which there can be any usable instruments */
for (t=tbot; t<=ttop; t++) {
if (t - minlag >= 0) {
tbase = t;
break;
}
}
if (tbase > ttop) {
fprintf(stderr, " no usable instruments for this spec\n");
dpd->nzb -= 1;
for (k=i; k<dpd->nzb; k++) {
copy_diag_info(&dpd->d[k], &dpd->d[k+1]);
}
i--;
continue;
}
#if IVDEBUG
fprintf(stderr, " tbase = %d\n", tbase);
#endif
/* step forward, cumulating in-principle usable instruments */
for (t=tbase; t<=ttop; t++) {
ii = 0;
for (k=minlag; k<=maxlag && t-k >= 0; k++) {
ii++;
if (k > usable_maxlag) {
usable_maxlag = k;
}
}
#if IVDEBUG
fprintf(stderr, " ii = max insts at t=%d = %d\n", t, ii);
#endif
itot += ii;
}
#if IVDEBUG
fprintf(stderr, " total insts = %d\n", itot);
fprintf(stderr, " usable maxlag = %d\n", usable_maxlag);
#endif
dpd->d[i].tbase = tbase;
dpd->d[i].rows = itot;
dpd->d[i].maxlag = usable_maxlag;
nrows += itot;
}
return nrows;
}
/* lev_iv_accounts:
On input tbot should be the first available obs in levels
and ttop should be the last available obs in levels
(in each case, for any unit). These indices are based at 0
for the first period in the unit's data.
minlag and maxlag represent the minimum and maximum
lags that have been specified for the given instrument.
*/
int lev_iv_accounts (ddset *dpd, int tbot, int ttop)
{
int i, t, k, nrows = 0;
#if IVDEBUG
fprintf(stderr, "*** lev_iv_accounts: tbot = %d, ttop = %d\n", tbot, ttop);
#endif
for (i=0; i<dpd->nzb2; i++) {
int minlag = dpd->d2[i].minlag;
int maxlag = dpd->d2[i].maxlag;
int usable_maxlag = 0;
int tbase = ttop + 1;
int ii, itot = 0;
dpd->d2[i].rows = 0;
#if IVDEBUG
fprintf(stderr, "spec %d: minlag = %d, maxlag = %d\n",
i, minlag, maxlag);
#endif
/* find tbase = the first obs in levels for which there can
be any usable instruments; since these instruments are
differences we need to go back one step beyond minlag
*/
for (t=tbot; t<=ttop; t++) {
if (t - minlag - 1 >= 0) {
tbase = t;
break;
}
}
if (tbase > ttop) {
fprintf(stderr, " no usable instruments for this spec\n");
dpd->nzb2 -= 1;
for (k=i; k<dpd->nzb2; k++) {
copy_diag_info(&dpd->d2[k], &dpd->d2[k+1]);
}
i--;
continue;
}
#if IVDEBUG
fprintf(stderr, " tbase = %d\n", tbase);
#endif
/* step forward, cumulating in-principle usable instruments */
for (t=tbase; t<=ttop; t++) {
ii = 0;
for (k=minlag; k<=maxlag && t-k-1 >= 0; k++) {
ii++;
if (k > usable_maxlag) {
usable_maxlag = k;
}
}
#if IVDEBUG
fprintf(stderr, " ii = max insts at t=%d = %d\n", t, ii);
#endif
itot += ii;
}
#if IVDEBUG
fprintf(stderr, " total insts = %d\n", itot);
fprintf(stderr, " usable maxlag = %d\n", usable_maxlag);
#endif
dpd->d2[i].tbase = tbase;
dpd->d2[i].rows = itot;
dpd->d2[i].maxlag = usable_maxlag;
nrows += itot;
}
return nrows;
}
/* Work through the array of block-diagonal instrument
specifications. Discard any useless ones, trim the
maxlag values to what is supported on the data,
and for each spec, count and record the implied number
of instrument rows that will appear in the Z matrix.
*/
static int block_instrument_count (ddset *dpd, int t1lev, int t2pen)
{
int nrows;
nrows = diff_iv_accounts(dpd, t1lev, t2pen);
dpd->nzdiff = nrows;
dpd->nz += dpd->nzdiff;
#if IVDEBUG
fprintf(stderr, "block_instrument_count, diffs: got %d rows (total = %d)\n",
dpd->nzdiff, dpd->nz);
#endif
if (gmm_sys(dpd)) {
nrows = lev_iv_accounts(dpd, dpd->t1min, dpd->t2max);
dpd->nzlev = nrows;
dpd->nz += dpd->nzlev;
} else {
nrows = 0;
}
#if IVDEBUG
fprintf(stderr, "block_instrument_count, levels: got %d rows (total = %d)\n",
dpd->nzlev, dpd->nz);
#endif
return 0;
}
/* We do this accounting first so that we know the sizes of the
various (and numerous) matrices that we'll need for the whole
analysis at the outset; we can then allocate memory en bloc.
*/
static void do_unit_accounting (ddset *dpd, const DATASET *dset,
int **Goodobs)
{
/* t1lev = index of first good obs in levels,
t1dif = index of first good obs in differences,
t2pen = index of penultimate good obs in levels
*/
int t1lev = dpd->T, t1dif = dpd->T, t2pen = 0;
int i, t;
/* just make sure these are zeroed */
dpd->nzdiff = dpd->nzlev = 0;
/* total instruments, so far */
dpd->nz = dpd->nzr;
/* initialize observation counts */
dpd->effN = dpd->ndiff = dpd->nlev = 0;
dpd->minTi = dpd->T;
/* initialize other accounts */
dpd->t2max = 0;
for (i=0, t=dpd->t1; i<dpd->N; i++, t+=dpd->T) {
int *goodobs = Goodobs[i];
int Ti = check_unit_obs(dpd, goodobs, dset, t);
int gmax = goodobs[0];
#if DPDEBUG > 1
fprintf(stderr, "unit %d: Ti = %d\n", i+1, Ti);
#endif
if (Ti > 0) {
dpd->effN += 1;
dpd->ndiff += Ti;
if (gmm_sys(dpd)) {
dpd->nlev += Ti + 1;
}
if (Ti > dpd->maxTi) {
dpd->maxTi = Ti;
}
if (Ti < dpd->minTi) {
dpd->minTi = Ti;
}
if (goodobs[1] < t1lev) {
t1lev = goodobs[1];
}
if (goodobs[2] < t1dif) {
t1dif = goodobs[2];
}
if (goodobs[gmax] > dpd->t2max) {
dpd->t2max = goodobs[gmax];
}
if (goodobs[gmax-1] > t2pen) {
t2pen = goodobs[gmax-1];
}
}
}
dpd->t1min = (gmm_sys(dpd))? t1lev : t1dif;
/* figure number of time dummies, if wanted */
if (dpd->flags & DPD_TIMEDUM) {
dpd->ntdum = dpd->t2max - dpd->t1min;
if (dpd->ifc == 0) {
dpd->ntdum += 1;
}
dpd->k += dpd->ntdum;
dpd->nz += dpd->ntdum;
}
if (dpd->nzb > 0) {
/* figure number of extra block-diagonal instruments */
block_instrument_count(dpd, t1lev, t2pen);
}
/* figure the required number of columns for the Yi and Xi data
matrices: this must be great enough to span the data range
for all units taken together
*/
dpd->max_ni = dpd->t2max - dpd->t1min + 1;
if (dpd->flags & DPD_SYSTEM) {
dpd->max_ni += dpd->max_ni - 1;
}
dpd->dcols = dpd->t2max - t1dif + 1;
dpd->dcolskip = dpd->p + 1;
if (t1dif > dpd->dcolskip) {
dpd->dcolskip = t1dif;
}
dpd->lcolskip = (t1lev > dpd->p)? t1lev : dpd->p;
dpd->lcol0 = dpd->dcols - dpd->lcolskip;
/* sum the total observations overall */
dpd->totobs = dpd->ndiff + dpd->nlev;
#if DPDEBUG
fprintf(stderr, "*** after dpanel accounting:\n"
" effN=%d, max_ni=%d, k=%d, ntdum=%d, nz=%d\n",
dpd->effN, dpd->max_ni, dpd->k, dpd->ntdum, dpd->nz);
fprintf(stderr, " maxTi=%d, minTi=%d\n", dpd->maxTi, dpd->minTi);
fprintf(stderr, " t1min=%d, t2max=%d\n", dpd->t1min, dpd->t2max);
fprintf(stderr, " t1lev=%d, t1dif=%d\n", t1lev, t1dif);
#endif
}
/* Based on the accounting of good observations for a unit recorded
in the @goodobs list, fill matrix D (which is used to
construct H unless we're doing things "dpdstyle").
*/
static void build_unit_D_matrix (ddset *dpd, int *goodobs, gretl_matrix *D)
{
int usable = goodobs[0] - 1;
int i, j, i0, i1;
gretl_matrix_zero(D);
/* differences */
for (i=0; i<usable; i++) {
i0 = goodobs[i+1];
i1 = goodobs[i+2];
j = i1 - dpd->dcolskip;
gretl_matrix_set(D, i0, j, -1);
gretl_matrix_set(D, i1, j, 1);
}
/* levels */
if (gmm_sys(dpd)) {
for (i=1; i<=goodobs[0]; i++) {
i1 = goodobs[i];
j = i1 + dpd->lcol0;
gretl_matrix_set(D, i1, j, 1);
}
}
#if DPDEBUG > 2
gretl_matrix_print(D, "D");
#endif
}
static void build_unit_H_matrix (ddset *dpd, int *goodobs,
gretl_matrix *D)
{
build_unit_D_matrix(dpd, goodobs, D);
gretl_matrix_multiply_mod(D, GRETL_MOD_TRANSPOSE,
D, GRETL_MOD_NONE,
dpd->H, GRETL_MOD_NONE);
}
static void make_dpdstyle_H (gretl_matrix *H, int nd)
{
int i;
gretl_matrix_zero(H);
gretl_matrix_set(H, 0, 0, 2);
for (i=1; i<H->rows; i++) {
if (i < nd) {
gretl_matrix_set(H, i, i, 2);
gretl_matrix_set(H, i-1, i, -1);
gretl_matrix_set(H, i, i-1, -1);
} else {
gretl_matrix_set(H, i, i, 1);
}
}
#if DPDEBUG > 1
gretl_matrix_print(H, "dpdstyle H");
#endif
}
static int timedum_level (ddset *dpd, int j, int t)
{
if (dpd->ifc) {
return (t == j + 1 + dpd->t1min)? 1 : 0;
} else {
return (t == j + dpd->t1min)? 1 : 0;
}
}
static double timedum_diff (ddset *dpd, int j, int t)
{
int d0 = timedum_level(dpd, j, t);
int d1 = timedum_level(dpd, j, t-1);
return d0 - d1;
}
/* Build row vector of dependent variable values in @Yi using
differences, followed by levels if wanted.
*/
static int build_Y (ddset *dpd, int *goodobs,
const DATASET *dset,
int t, gretl_matrix *Yi)
{
const double *y = dset->Z[dpd->yno];
int i, usable = goodobs[0] - 1;
int t0, t1, i0, i1, ycol;
double dy;
gretl_matrix_zero(Yi);
/* differences */
for (i=0; i<usable; i++) {
i0 = goodobs[i+1];
i1 = goodobs[i+2];
t0 = t + i0;
t1 = t + i1;
dy = y[t1] - y[t0];
ycol = i1 - dpd->dcolskip;
if (ycol >= Yi->cols) {
fprintf(stderr, "Bzzt! scribbling off the end of Yi (diffs)\n"
" Yi->cols = %d; i1 - dcolskip = %d - %d = %d\n",
Yi->cols, i1, dpd->dcolskip, ycol);
return E_DATA;
} else {
gretl_vector_set(Yi, ycol, dy);
}
}
if (gmm_sys(dpd)) {
/* levels */
for (i=0; i<=usable; i++) {
i1 = goodobs[i+1];
t1 = t + i1;
ycol = i1 + dpd->lcol0;
if (ycol >= Yi->cols) {
fprintf(stderr, "Bzzt! scribbling off the end of Yi (levels)\n"
" Yi->cols = %d; i1 + lcol0 = %d + %d = %d\n",
Yi->cols, i1, dpd->lcol0, ycol);
fprintf(stderr, " note: dpd->t1min = %d, 1 + dpd->p = %d\n",
dpd->t1min, 1 + dpd->p);
return E_DATA;
} else {
gretl_vector_set(Yi, ycol, y[t1]);
}
}
}
return 0;
}
/* Build matrix of right-hand side variable values in @Xi using
differences, followed by levels if wanted.
*/
static void build_X (ddset *dpd, int *goodobs,
const DATASET *dset,
int t, gretl_matrix *Xi)
{
const double *y = dset->Z[dpd->yno];
int usable = goodobs[0] - 1;
int nlags = dpd->laglist[0];
const double *xj;
int t0, t1, i0, i1;
int i, j, lj;
int row, col;
double dx;
gretl_matrix_zero(Xi);
/* differences */
for (i=0; i<usable; i++) {
i0 = goodobs[i+1];
i1 = goodobs[i+2];
t0 = t + i0;
t1 = t + i1;
row = 0;
col = i1 - dpd->dcolskip;
for (j=1; j<=nlags; j++) {
lj = dpd->laglist[j];
dx = y[t1-lj] - y[t0-lj];
gretl_matrix_set(Xi, row++, col, dx);
}
for (j=1; j<=dpd->nx; j++) {
/* Note: we don't difference away the constant
here, but if dpdstyle is not in force the
constant will have been removed already.
*/
if (!gmm_sys(dpd) && dpd->xlist[j] == 0) {
dx = 1.0;
} else {
xj = dset->Z[dpd->xlist[j]];
dx = xj[t1] - xj[t0];
}
gretl_matrix_set(Xi, row++, col, dx);
}
if (dpd->ntdum > 0) {
for (j=0; j<dpd->ntdum; j++) {
if (gmm_sys(dpd)) {
dx = timedum_diff(dpd, j, i1);
} else if (dpd_style(dpd)) {
/* as per DPD: leave dummies in levels */
dx = timedum_level(dpd, j, i1);
} else {
/* as per xtabond2 */
dx = timedum_diff(dpd, j, i1);
}
gretl_matrix_set(Xi, row++, col, dx);
}
}
}
if (gmm_sys(dpd)) {
for (i=0; i<=usable; i++) {
i1 = goodobs[i+1];
t1 = t + i1;
row = 0;
col = i1 + dpd->lcol0;
for (j=1; j<=nlags; j++) {
lj = dpd->laglist[j];
gretl_matrix_set(Xi, row++, col, y[t1-lj]);
}
for (j=1; j<=dpd->nx; j++) {
xj = dset->Z[dpd->xlist[j]];
gretl_matrix_set(Xi, row++, col, xj[t1]);
}
for (j=0; j<dpd->ntdum; j++) {
dx = timedum_level(dpd, j, i1);
gretl_matrix_set(Xi, row++, col, dx);
}
}
}
}
/* note: this amounts to t1*(t1-1)/2 in the
straightforward case */
static int row_increment (diag_info *d, int t1)
{
int k1 = d->level ? 1 : 0;
int t, k, r = 0;
for (t=d->tbase; t<t1; t++) {
for (k=d->minlag; k<=d->maxlag && t-k-k1 >= 0; k++) {
r++;
}
}
return r;
}
#if IVDEBUG
/* verify that we're not writing instrument values to rows of
the Z matrix that are incompatible with what was figured
out by block_instrument_count (see above).
*/
static int bad_write_check (ddset *dpd, int row, int lev)
{
if (!lev && row >= dpd->nzdiff) {
fprintf(stderr, "*** ERROR in gmm_inst_diff: writing to "
"bad row %d (max is %d)\n", row,
dpd->nzdiff - 1);
return 1;
} else if (lev && (row < dpd->nzdiff || row >= dpd->nzdiff + dpd->nzlev)) {
fprintf(stderr, "*** ERROR in gmm_inst_lev: writing to "
"bad row %d (min is %d, max is %d)\n", row,
dpd->nzdiff, dpd->nzdiff + dpd->nzlev - 1);
return 1;
}
return 0;
}
#endif
/* GMM-style instruments in levels for the eqns in differences */
static int gmm_inst_diff (ddset *dpd, int bnum, const double *x,
int s, int *goodobs, int row0, int col0,
gretl_matrix *Zi)
{
int maxlag = dpd->d[bnum].maxlag;
int minlag = dpd->d[bnum].minlag;
int tmax = goodobs[goodobs[0]];
int i, t, t1, t2;
int col, row;
double xt;
for (i=1; i<goodobs[0]; i++) {
t1 = goodobs[i];
t2 = goodobs[i+1];
col = col0 + t2 - dpd->dcolskip;
row = row0 + row_increment(&dpd->d[bnum], t1+1);
for (t=0; t<=tmax; t++) {
/* 2010-09-04: this was: t2 - t >= minlag && t1 - t < maxlag */
if (t1 - t >= minlag - 1 && t1 - t < maxlag) {
/* the criterion here needs care */
xt = x[s+t];
if (!na(xt)) {
#if IVDEBUG
bad_write_check(dpd, row, 0);
#endif
gretl_matrix_set(Zi, row, col, xt);
}
row++;
}
}
}
return row0 + dpd->d[bnum].rows;
}
/* GMM-style instruments in differences for the eqns in levels */
static int gmm_inst_lev (ddset *dpd, int bnum, const double *x,
int s, int *goodobs, int row0, int col0,
gretl_matrix *Zi)
{
int maxlag = dpd->d2[bnum].maxlag;
int minlag = dpd->d2[bnum].minlag;
int tmax = goodobs[goodobs[0]];
int i, k, t, t1;
int col, row;
double x0, x1;
for (i=1; i<=goodobs[0]; i++) {
t1 = goodobs[i];
col = col0 + t1 - dpd->lcolskip;
row = row0 + row_increment(&dpd->d2[bnum], t1);
for (t=1; t<=tmax; t++) {
k = t1 - t;
if (k <= maxlag && k >= minlag) {
x0 = x[s+t-1];
x1 = x[s+t];
if (!na(x1) && !na(x0)) {
#if IVDEBUG
bad_write_check(dpd, row, 1);
#endif
gretl_matrix_set(Zi, row, col, x1 - x0);
}
row++;
}
}
}
return row0 + dpd->d2[bnum].rows;
}
/* Build the matrix of per-unit instrument values in @Zi, which
has the instruments in rows and the observations in columns.
Note that each unit's Zi is the same size, padded with zero columns
for missing observations as needed. The number of columns in Zi
equals the maximal span of the data for all units taken together,
counting both observations in differences and observations in
levels, if applicable.
We pack the instruments in the following order:
1) G1: GMM-style instruments in levels for equations in
differences
3) G2: GMM-style instruments in differences for equations in
levels, if present
5) I1: "Regular" instruments, differenced exog vars for eqns
in differences
6) I2: "Regular" instruments, levels of exog vars for eqns
in levels, if any
7) D1: Time dummies for eqns in differences, if specified and if
"system" estimation is not being done
8) D2: Time dummies for eqns in levels, if specified
The pattern for the non-system case is
Z' = | G1 : I1 : D1 |
and for the full system case it is
Z' = | G1 : 0 : I1 : 0 |
| 0 : G2 : I2 : D2 |
*/
static void build_Z (ddset *dpd, int *goodobs,
const DATASET *dset,
int t, gretl_matrix *Zi)
{
const int usable = goodobs[0] - 1;
const double *x;
double dx;
/* k2 is the starting row for "regular" instruments */
int k2 = dpd->nzdiff + dpd->nzlev;
/* k3 marks the starting row for time dummies */
int k3 = k2 + dpd->nzr;
int t0, t1, i0, i1;
int i, j, col, row = 0;
gretl_matrix_zero(Zi);
/* GMM-style instruments in levels for diffs equations */
for (i=0; i<dpd->nzb; i++) {
x = dset->Z[dpd->d[i].v];
row = gmm_inst_diff(dpd, i, x, t, goodobs, row, 0, Zi);
}
col = dpd->t2max - dpd->t1min;
/* GMM-style instruments in diffs for levels equations */
for (i=0; i<dpd->nzb2; i++) {
x = dset->Z[dpd->d2[i].v];
row = gmm_inst_lev(dpd, i, x, t, goodobs, row, col, Zi);
}
/* equations in differences: differenced exog vars */
if (dpd->nzr > 0) {
for (i=0; i<usable; i++) {
i0 = goodobs[i+1];
i1 = goodobs[i+2];
col = i1 - dpd->dcolskip;
t0 = t + i0;
t1 = t + i1;
for (j=0; j<dpd->nzr; j++) {
/* we don't difference the constant, but unless
dpdstyle is in force it will have been
dropped by this point
*/
if (!gmm_sys(dpd) && dpd->ilist[j+1] == 0) {
dx = 1.0;
} else {
x = dset->Z[dpd->ilist[j+1]];
dx = x[t1] - x[t0];
}
gretl_matrix_set(Zi, k2 + j, col, dx);
}
}
}
/* equations in differences: time dummies */
if (dpd->ntdum > 0 && !gmm_sys(dpd)) {
for (i=0; i<usable; i++) {
i1 = goodobs[i+2];
col = i1 - dpd->dcolskip;
for (j=0; j<dpd->ntdum; j++) {
dx = timedum_level(dpd, j, i1);
gretl_matrix_set(Zi, k3 + j, col, dx);
}
}
}
if (gmm_sys(dpd)) {
/* equations in levels: levels of exog vars */
if (dpd->nzr > 0) {
for (i=0; i<=usable; i++) {
i1 = goodobs[i+1];
t1 = t + i1;
col = i1 + dpd->lcol0;
for (j=0; j<dpd->nzr; j++) {
x = dset->Z[dpd->ilist[j+1]];
gretl_matrix_set(Zi, k2 + j, col, x[t1]);
}
}
}
/* equations in levels: time dummies */
if (dpd->ntdum > 0) {
for (i=0; i<=usable; i++) {
i1 = goodobs[i+1];
col = i1 + dpd->lcol0;
for (j=0; j<dpd->ntdum; j++) {
dx = timedum_level(dpd, j, i1);
gretl_matrix_set(Zi, k3 + j, col, dx);
}
}
}
}
}
static int trim_zero_inst (ddset *dpd)
{
char *mask;
int err = 0;
#if DPDEBUG
fprintf(stderr, "before trimming, order of A = %d\n", dpd->A->rows);
#endif
#if WRITE_MATRICES
gretl_matrix_write_as_text(dpd->A, "dpd-bigA.mat", 0);
#endif
mask = gretl_matrix_zero_diag_mask(dpd->A, &err);
if (mask != NULL) {
err = gretl_matrix_cut_rows_cols(dpd->A, mask);
if (!err) {
dpd_shrink_matrices(dpd, mask);
}
free(mask);
}
#if DPDEBUG
gretl_matrix_print(dpd->A, "dpd->A, after trim_zero_inst");
#endif
if (!err) {
gretl_matrix_divide_by_scalar(dpd->A, dpd->effN);
}
return err;
}
/* allocate temporary storage needed by do_units() */
static int make_units_workspace (ddset *dpd, gretl_matrix **D,
gretl_matrix **Yi, gretl_matrix **Xi)
{
int err = 0;
if (dpd->flags & DPD_DPDSTYLE) {
/* Ox/DPD-style H matrix: D is not needed */
*D = NULL;
} else {
*D = gretl_matrix_alloc(dpd->T, dpd->max_ni);
if (*D == NULL) {
return E_ALLOC;
}
}
*Yi = gretl_matrix_alloc(1, dpd->max_ni);
*Xi = gretl_matrix_alloc(dpd->k, dpd->max_ni);
if (*Yi == NULL || *Xi == NULL) {
gretl_matrix_free(*D);
gretl_matrix_free(*Yi);
gretl_matrix_free(*Xi);
err = E_ALLOC;
}
return err;
}
/* Stack the per-unit data matrices from unit @unum for future use,
skipping unused observations and recording the numbers of
observations in differences and in levels.
*/
static void stack_unit_data (ddset *dpd,
const gretl_matrix *Yi,
const gretl_matrix *Xi,
const gretl_matrix *Zi,
int *goodobs, int unum,
int *row)
{
unit_info *unit = &dpd->ui[unum];
double x;
int i, j, k, s = *row;
for (i=2; i<=goodobs[0]; i++) {
k = goodobs[i] - dpd->dcolskip;
gretl_vector_set(dpd->Y, s, Yi->val[k]);
for (j=0; j<Xi->rows; j++) {
x = gretl_matrix_get(Xi, j, k);
gretl_matrix_set(dpd->X, s, j, x);
}
for (j=0; j<dpd->nz; j++) {
x = gretl_matrix_get(Zi, j, k);
gretl_matrix_set(dpd->ZT, j, s, x);
}
s++;
}
/* record the indices of the first and last
differenced observations */
unit->t1 = goodobs[2];
unit->t2 = goodobs[goodobs[0]];
/* record the number of differenced obs */
unit->nobs = (goodobs[0] > 0)? (goodobs[0] - 1) : 0;
if (gmm_sys(dpd)) {
for (i=1; i<=goodobs[0]; i++) {
k = goodobs[i] + dpd->lcol0;
if (k >= Yi->cols) {
fprintf(stderr, "*** stack_unit_data: reading off "
"end of Yi (k=%d, Yi->cols=%d)\n", k, Yi->cols);
fprintf(stderr, " at goodobs[%d] = %d\n", i, goodobs[i]);
continue;
}
gretl_vector_set(dpd->Y, s, Yi->val[k]);
for (j=0; j<Xi->rows; j++) {
x = gretl_matrix_get(Xi, j, k);
gretl_matrix_set(dpd->X, s, j, x);
}
for (j=0; j<dpd->nz; j++) {
x = gretl_matrix_get(Zi, j, k);
gretl_matrix_set(dpd->ZT, j, s, x);
}
s++;
}
/* record the number of levels obs and augment total */
unit->nlev = goodobs[0];
unit->nobs += unit->nlev;
}
#if WRITE_MATRICES
gretl_matrix_write_as_text(dpd->ZT, "dpdZT.mat", 0);
#endif
*row = s;
}
/* Main driver for system GMM: the core is a loop across
the panel units to build the data and instrument matrices
and cumulate A = \sum_i Z_i H_i Z_i'.
At this point we have already done the observations
accounts, which are recorded in the Goodobs lists.
*/
static int do_units (ddset *dpd, const DATASET *dset,
int **Goodobs)
{
#if DPDEBUG
char ystr[16];
#endif
gretl_matrix *D = NULL;
gretl_matrix *Yi = NULL;
gretl_matrix *Xi = NULL;
gretl_matrix *Zi = NULL;
int i, t, Yrow;
int err = 0;
err = make_units_workspace(dpd, &D, &Yi, &Xi);
if (err) {
return err;
}
Zi = dpd->Zi;
gretl_matrix_reuse(Zi, dpd->nz, dpd->max_ni);
if (D == NULL) {
/* the H matrix will not vary by unit */
int tau = dpd->t2max - dpd->t1min + 1;
if (gmm_sys(dpd)) {
/* t1min is actually "levels-only" */
tau--;
}
make_dpdstyle_H(dpd->H, tau);
}
/* initialize cumulators */
gretl_matrix_zero(dpd->XZ);
gretl_matrix_zero(dpd->A);
gretl_matrix_zero(dpd->ZY);
/* initialize data stacker */
Yrow = 0;
#if DPDEBUG
/* this should not be necessary if stack_unit_data() is
working correctly */
gretl_matrix_zero(dpd->Y);
gretl_matrix_zero(dpd->X);
gretl_matrix_zero(dpd->ZT);
#endif
for (i=0; i<dpd->N; i++) {
int *goodobs = Goodobs[i];
int Ti = goodobs[0] - 1;
if (Ti == 0) {
continue;
}
t = data_index(dpd, i);
err = build_Y(dpd, goodobs, dset, t, Yi);
if (err) {
break;
}
build_X(dpd, goodobs, dset, t, Xi);
build_Z(dpd, goodobs, dset, t, Zi);
#if DPDEBUG
sprintf(ystr, "do_units: Y_%d", i);
gretl_matrix_print(Yi, ystr);
gretl_matrix_print(Xi, "do_units: Xi");
gretl_matrix_print(Zi, "do_units: Zi");
#endif
if (D != NULL) {
build_unit_H_matrix(dpd, goodobs, D);
}
gretl_matrix_qform(Zi, GRETL_MOD_NONE,
dpd->H, dpd->A, GRETL_MOD_CUMULATE);
/* stack the individual data matrices for future use */
stack_unit_data(dpd, Yi, Xi, Zi, goodobs, i, &Yrow);
}
#if DPDEBUG
gretl_matrix_print(dpd->Y, "dpd->Y");
gretl_matrix_print(dpd->X, "dpd->X");
#endif
#if WRITE_MATRICES
gretl_matrix_write_as_text(dpd->Y, "dpdY.mat", 0);
gretl_matrix_write_as_text(dpd->X, "dpdX.mat", 0);
#endif
gretl_matrix_free(D);
gretl_matrix_free(Yi);
gretl_matrix_free(Xi);
return err;
}
/* the user hasn't supplied a block-diagonal spec for
y in the differences equations: here we set up the
default version, with unlimited lags
*/
static int add_default_ydiff_spec (ddset *dpd)
{
diag_info *d;
d = realloc(dpd->d, (dpd->nzb + 1) * sizeof *d);
if (d == NULL) {
return E_ALLOC;
} else {
/* insert the y spec in first place, moving
any other specs up */
int i;
dpd->d = d;
for (i=dpd->nzb; i>0; i--) {
copy_diag_info(&dpd->d[i], &dpd->d[i-1]);
}
d = &dpd->d[0];
d->v = dpd->yno;
d->depvar = 1;
d->minlag = 2;
d->maxlag = 99;
d->level = 0;
d->rows = 0;
dpd->nzb += 1;
}
return 0;
}
/* the user has specified "system" but hasn't supplied a
block-diagonal spec for y in the levels equations: here
we set up the default version, with 1 lag
*/
static int add_default_ylev_spec (ddset *dpd)
{
diag_info *d;
d = realloc(dpd->d, (dpd->nzb + 1) * sizeof *d);
if (d == NULL) {
return E_ALLOC;
} else {
dpd->d = d;
d = &dpd->d[dpd->nzb];
d->v = dpd->yno;
d->depvar = 1;
d->minlag = 1;
d->maxlag = 1;
d->level = 1;
d->rows = 0;
dpd->nzb += 1;
dpd->nzb2 += 1;
}
return 0;
}
static int compare_gmm_specs (const void *a, const void *b)
{
const diag_info *da = a;
const diag_info *db = b;
int ret = da->level - db->level;
if (ret == 0) {
ret = db->depvar - da->depvar;
}
return ret;
}
/* Given the info on instrument specification returned by the
parser that's in common between arbond and dpanel, make
any adjustments that may be needed in the system case.
*/
static int dpanel_adjust_GMM_spec (ddset *dpd)
{
int have_ydiff_spec = 0;
int have_ylev_spec = 0;
int nzb1 = 0;
int i, err = 0;
/* check whether we have:
- a GMM-style spec for the dep var, differenced equations
- any block-diagonal specs for levels eqns
- a GMM-style spec for dep var, levels equations
*/
for (i=0; i<dpd->nzb; i++) {
if (dpd->d[i].level == 0) {
nzb1++;
if (dpd->d[i].v == dpd->yno) {
dpd->d[i].depvar = 1;
have_ydiff_spec = 1;
}
} else {
dpd->nzb2 += 1;
if (dpd->d[i].v == dpd->yno) {
dpd->d[i].depvar = 1;
have_ylev_spec = 1;
}
}
}
if (!have_ydiff_spec) {
err = add_default_ydiff_spec(dpd);
if (err) {
return err;
}
}
if (gmm_sys(dpd) && !have_ylev_spec) {
err = add_default_ylev_spec(dpd);
if (err) {
return err;
}
}
if (dpd->nzb2 > 0 && dpd->nzb2 < dpd->nzb) {
/* ensure the levels-equations specs come last */
qsort(dpd->d, dpd->nzb, sizeof *dpd->d, compare_gmm_specs);
}
if (dpd->nzb2 > 0) {
/* henceforth dpd->nzb refers to the number of specs in
differences, not the total number */
dpd->nzb -= dpd->nzb2;
dpd->d2 = dpd->d + dpd->nzb;
dpd->flags |= DPD_SYSTEM; /* in case it's not present */
}
return err;
}
/* we're doing two-step, but print the one-step results for
reference */
static int print_step_1 (MODEL *pmod, ddset *dpd,
int *list, const int *ylags,
const char *ispec,
const DATASET *dset,
gretlopt opt, PRN *prn)
{
int err = dpd_finalize_model(pmod, dpd, list, ylags, ispec,
dset, opt);
if (!err) {
dpd->flags &= ~DPD_TWOSTEP;
pmod->ID = -1;
printmodel(pmod, dset, OPT_NONE, prn);
pmod->ID = 0;
dpd->flags |= (DPD_TWOSTEP | DPD_REDO);
}
return err;
}
#if DPDEBUG
static void debug_print_specs (ddset *dpd, const char *ispec,
const DATASET *dset)
{
int i;
if (ispec != NULL) {
fprintf(stderr, "user's ispec = '%s'\n", ispec);
}
fprintf(stderr, "nzb = %d, nzb2 = %d\n", dpd->nzb, dpd->nzb2);
fprintf(stderr, "nzr = %d\n", dpd->nzr);
for (i=0; i<dpd->nzb; i++) {
fprintf(stderr, "var %d (%s): lags %d to %d (GMM)\n",
dpd->d[i].v, dset->varname[dpd->d[i].v],
dpd->d[i].minlag, dpd->d[i].maxlag);
}
for (i=0; i<dpd->nzb2; i++) {
fprintf(stderr, "var %d (%s): lags %d to %d (GMMlevel)\n",
dpd->d2[i].v, dset->varname[dpd->d[i].v],
dpd->d2[i].minlag, dpd->d2[i].maxlag);
}
printlist(dpd->ilist, "ilist (regular instruments)");
}
#endif
/* Public interface for new approach, including system GMM:
in a script use --system (OPT_L, think "levels") to get
Blundell-Bond. To build the H matrix as per Ox/DPD use
the option --dpdstyle (OPT_X).
*/
MODEL dpd_estimate (const int *list, const int *laglist,
const char *ispec, const DATASET *dset,
gretlopt opt, PRN *prn)
{
diag_info *d = NULL;
ddset *dpd = NULL;
int **Goodobs = NULL;
int *dlist = NULL;
int nlevel = 0;
int nzb = 0;
MODEL mod;
int err = 0;
gretl_model_init(&mod, dset);
if (libset_get_bool(DPDSTYLE)) {
opt |= OPT_X;
}
/* parse GMM instrument info, if present */
if (ispec != NULL && *ispec != '\0') {
mod.errcode = parse_GMM_instrument_spec(DPANEL, ispec, dset,
&d, &nzb, &nlevel);
if (mod.errcode) {
return mod;
}
}
if (nlevel > 0 && !(opt & OPT_L)) {
/* make --system (levels) explicit */
opt |= OPT_L;
}
dlist = gretl_list_copy(list);
if (dlist == NULL) {
mod.errcode = E_ALLOC;
return mod;
}
dpd = ddset_new(DPANEL, dlist, laglist, dset, opt, d, nzb, &mod.errcode);
if (mod.errcode) {
fprintf(stderr, "Error %d in dpd_init\n", mod.errcode);
return mod;
}
dpanel_adjust_GMM_spec(dpd);
#if DPDEBUG
if (dpd->nzb > 0 || dpd->nzb2 > 0) {
debug_print_specs(dpd, ispec, dset);
}
#endif
Goodobs = gretl_list_array_new(dpd->N, dpd->T);
if (Goodobs == NULL) {
err = E_ALLOC;
}
if (!err) {
do_unit_accounting(dpd, dset, Goodobs);
err = dpd_allocate_matrices(dpd);
}
if (!err) {
/* build the moment matrices */
err = do_units(dpd, dset, Goodobs);
}
gretl_list_array_free(Goodobs, dpd->N);
if (!err) {
err = trim_zero_inst(dpd);
}
if (!err) {
err = dpd_step_1(dpd);
}
if (!err && (opt & OPT_T)) {
/* second step, if wanted */
if (opt & OPT_V) {
err = print_step_1(&mod, dpd, dlist, laglist, ispec,
dset, opt, prn);
}
if (!err) {
err = dpd_step_2(dpd);
}
}
if (err && !mod.errcode) {
mod.errcode = err;
}
if (!mod.errcode) {
/* write estimation info into model struct */
mod.errcode = dpd_finalize_model(&mod, dpd, dlist, laglist, ispec,
dset, opt);
} else {
free(dlist);
}
ddset_free(dpd);
return mod;
}
|