1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
|
function series ln_pdf_skt(series *u, scalar df, scalar ht_skew)
series ret = NA
if (df>2)
# sqrt(pi) = 1.77245385090551602729816748334
scalar q = lngamma((df+1)/2) - lngamma(df/2)
scalar c = exp(q)/(sqrt(df-2)*1.77245385090551602729816748334)
scalar a = 4 * ht_skew * c * ((df-2)/(df-1))
scalar b = sqrt(1 + 3*ht_skew^2 - a^2)
series d = (b*u + a)
d = (d<0) ? d/(1-ht_skew) : d/(1+ht_skew)
ret = log(b) + log(c) - ((df+1)/2) * log(1+(d^2/(df-2)))
endif
return ret
end function
function series ln_pdf_skged(series *x, scalar ni, scalar ta)
scalar p = 1/ni
lgp = lngamma(p)
lg2p = lngamma(2*p)
lg3p = lngamma(3*p)
tap1 = 1 + ta
tam1 = 1 - ta
scalar beta = 0.5 * exp(lg3p - lgp) * (tap1^3 + tam1^3) - \
4*ta^2 * exp(2 * (lg2p - lgp))
beta = sqrt(beta)
# m: mode
scalar m = - 2*ta/beta * exp( lg2p - lgp )
scalar lnorm = log(0.5 * beta) - lngamma(p+1)
series z = (x<m) ? (m-x)*beta/tam1 : (x-m)*beta/tap1
ret = lnorm - (z^ni)
return ret
end function
/*
* One-size-fits-all Loglikelihood function
*/
function series gig_loglik(series *e, series *h, scalar distrType,
matrix addpar, series *de, series *dh,
matrix *dd)
series ret = NA
de = NA
dh = NA
dd = {}
if distrType == 0 # Normal
series u = e/h
ret = -.91893853320467274177 - 0.5*(log(h) + e*u)
de = -u
dh = -0.5/h * (1 - e*u)
elif distrType == 1 # Student's t
scalar ni = addpar[1]
if (ni>2)
# series hadj = sqrt(h*(1-2/ni))
# series u = e/hadj
# ret = log(pdf(t, ni, u)/hadj)
series e2 = e*e
scalar K1 = lngamma((ni+1)/2) - lngamma(ni/2) - 0.5*log($pi*(ni-2))
series ret = K1 - 0.5 * log(h) - 0.5*(ni+1) * log(1 + e2/(h*(ni-2)))
series den = e2 + (ni-2)*h
de = - (ni + 1) * e / den
dh = 0.5/h * ((ni + 1)* e2 / den - 1)
scalar k1 = digamma((ni+1)/2) - digamma(ni/2) - 1/(ni-2)
series s1 = (ni + 1)/(ni - 2) * e2/den
series s2 = log(1 + e2/(h*(ni-2)))
matrix dd = 0.5*(k1 + s1 - s2)
endif
elif distrType == 2 # GED
scalar ni = addpar[1]
if (ni>0)
scalar p = 1/ni
scalar lg1 = lngamma(p)
scalar lg3 = lngamma(3*p)
scalar lC = log(ni/2) + 0.5*(lg3 - 3*lg1)
scalar k = exp(0.5*(lg1-lg3)) * (0.5^p)
series u = abs(e)/(k*sqrt(h))
ret = lC - 0.5*(u^ni + log(h))
endif
elif distrType == 3 # Skewed-T
scalar ni = addpar[1]
if (ni>2)
series u = e/sqrt(h)
alpha = tanh(addpar[2])
ret = ln_pdf_skt(&u, ni, alpha) - 0.5*log(h)
endif
elif distrType == 4 # Skewed-GED
scalar ni = addpar[1]
if (ni>0)
series u = e/sqrt(h)
alpha = tanh(addpar[2])
ret = ln_pdf_skged(&u, ni, alpha) - 0.5*log(h)
endif
endif
return ret
end function
/*
* Computes conditional variance and errors for the APARCH model.
* Returns an error code if any of the parameters is out of its domain.
*/
function scalar aparchFilter(series *depVar, series *h, series *e,
matrix *mReg, matrix *vX,
scalar p, scalar q, matrix *parameters,
scalar is_asymmetric,
matrix *deriv_h[null], matrix *deriv_e[null])
nmX = cols(mReg)
nvX = cols(vX)
scalar base = nmX + nvX
a0pos = base + 1
a1pos = a0pos + q -1
g0pos = a1pos + 1
g1pos = g0pos + q - 1
b0pos = g1pos + 1
b1pos = b0pos + p - 1
dpos = b1pos + 1
matrix avec = {0}
matrix gvec = {0}
matrix bvec = {0}
matrix omegas = parameters[nmX+1:base]
if q > 0
matrix avec = parameters[a0pos:a1pos]
matrix gvec = parameters[g0pos:g1pos]
endif
if p > 0
matrix bvec = parameters[b0pos:b1pos]
endif
delta = parameters[dpos]
err = 0
# Checking
# checks on alpha & beta are disabled
err = err || ((nvX==1) && omegas[1] < 0)
# err = err || (sumc(avec) + sumc(bvec)) > 1
# err = err || minc(avec | bvec) < 0
err = err || delta <= 0
# shape? gamma?
minh = 0
if err == 0
# handle the conditional mean first
if nmX > 0
series e = depVar - (mReg * parameters[1:nmX])
else
series e = depVar
endif
scalar e0 = mean(e^2)
matrix tmp_ae = mlag({abs(e)}, seq(1,q), e0 ^ (1/delta))
if is_asymmetric == 1
elag = mlag({e}, seq(1,q))
tmp_ae -= elag .* gvec'
endif
# Raising a negative value to a non-integer
# produces a complex number
err = (delta != floor(delta)) && (minc(minr(tmp_ae)) < 0)
if (!err)
Kd = tmp_ae .^ delta
series h = Kd * avec
# Var regressors
if (nvX>1)
series h += vX * omegas
else
series h += omegas[1]
endif
if p>0
h = filter(h, null, bvec, e0)
endif
err = min(h)<0 || max(!ok(h))
# the loglikelihood function needs sigma^2
if !err && (delta != 2)
h = h^(2/delta)
endif
endif
endif
if (!err && exists(deriv_h) && exists(deriv_e))
# FIXME: incomplete and experimental --------------------------------
#
# deriv_e and deriv_h should contain (eventually), the derivatives
# of (doh!) e and h, WITH RESPECT TO THE PARAMETERS
# what we have atm is a rough attempt to have it working in the GARCH
# case; we'll see about generalising it later
# ----------- mean eq. --------------
if nmX > 0
deriv_e = -mReg
else
deriv_e = {}
endif
scalar zcols = nvX + p + q * (1+is_asymmetric)
deriv_e ~= zeros(rows(vX), zcols)
# ----------- var eq. ---------------
# omega comes 2nd from last
# mu comes last
# alphas
me = Kd
matrix eeff = tmp_ae.^(delta-1)
if is_asymmetric == 1 # deltas
mh = -delta .* eeff .* ( elag .* avec' )
me ~= mh
endif
if (p > 0) # betas
mh = mlag({h}, seq(1, p), e0)
me ~= mh
endif
dr = rows(me) - rows(vX)
if (dr>0)
deriv_h = ( zeros(dr, cols(vX)) | vX ) ~ me
else
deriv_h = vX ~ me
endif
if nmX > 0
series tmpser = (e>0) ? -1 : 1
matrix sgn = {tmpser}
matrix mfocs = meanc({e} .* mReg)
matrix dmu = zeros(rows(deriv_h), nmX)
loop for i = 1 .. q
matrix focs = eeff[,i] .* mlag(mReg, i)
matrix tmpmat = (mlag(sgn, i) + gvec[i]) .* focs
dmu += avec[i] .* tmpmat
endloop
dmu = dmu .* delta
dmu[1,] = -2*mfocs*sumc(avec|bvec)
deriv_h = dmu ~ deriv_h
endif
if p > 0
loop for i = 1 .. cols(deriv_h)
series tmpser = deriv_h[,i]
tmpser = filter(tmpser, null, bvec)
deriv_h[,i] = tmpser
endloop
endif
if (delta != 2)
deriv_h = h^(delta/2) .* deriv_h .* (2/delta)
endif
endif
# -------------------------------------------------------------------
return err
end function
/*
* Computes conditional variance and errors for the EGARCH model.
* Returns an error code if any of the parameters is out of its domain.
*/
function scalar egarchFilter(series *y, series *h, series *u, \
matrix *mReg, matrix *vReg, \
scalar p, scalar q, matrix *params)
scalar n_mX = cols(mReg)
scalar n_vX = cols(vReg)
scalar err = 0
if n_mX == 0
series e = y
else
series e = y - (mReg * params[1:n_mX])
endif
series u = misszero(e) # Reassigns residuals for the next computation
scalar omegaini = n_mX + 1
scalar base = n_mX + n_vX
if n_vX == 1
series omega = params[omegaini]
else
series omega = vReg * params[omegaini:base]
endif
series logh = log(var(e))
# ERRORS
series d = (e>0)
series ae = abs(e)
if (p == 0) && (q<3)
if q == 1
scalar g = params[base+1]
scalar a = params[base+2]
series tmp = d(-1) ? (g+a) : (g-a)
series logh = omega + tmp*ae(-1)/exp(logh(-1)*0.5)
elif q == 2
scalar g1 = params[base+1]
scalar g2 = params[base+2]
scalar a1 = params[base+3]
scalar a2 = params[base+4]
series tmp1 = d(-1) ? (g1+a1) : (g1-a1)
series tmp2 = d(-2) ? (g2+a2) : (g2-a2)
series logh = omega + tmp1*ae(-1)/exp(logh(-1)*0.5) \
+ tmp2*ae(-2)/exp(logh(-2)*0.5)
endif
elif (p == 1) && (q<3)
if q == 1
scalar g = params[base+1]
scalar a = params[base+2]
scalar b = params[base+3]
if (b<1)
series tmp = d(-1) ? (g+a) : (g-a)
series logh = omega + tmp*ae(-1)/exp(logh(-1)*0.5) + b*logh(-1)
else
err = 1
endif
elif q == 2
scalar g1 = params[base+1]
scalar g2 = params[base+2]
scalar a1 = params[base+3]
scalar a2 = params[base+4]
scalar b = params[base+5]
series tmp1 = d(-1) ? (g1+a1) : (g1-a1)
series tmp2 = d(-2) ? (g2+a2) : (g2-a2)
series logh = omega + tmp1*ae(-1)/exp(logh(-1)*0.5)) \
+ tmp2*ae(-2)/exp(logh(-2)*0.5)) \
+ b*logh(-1)
endif
else
string evalstr = "omega"
loop for i = 1 .. q
scalar a$i = params[base+i]
scalar g$i = params[base+i+p+q]
evalstr += " + a$i*abs(e(-$i)/exp(logh(-$i)*0.5)) + g$i*e(-$i)/exp(logh(-$i)*0.5)"
endloop
loop for i = 1 .. p
scalar b$i = params[base+p+i]
evalstr += " + b$i*logh(-$i)"
endloop
series logh = @evalstr
endif
if (!err)
if max(logh) > 100
#Overflow check
logh = NA
else
h = exp(logh)
endif
endif
return err
end function
function scalar gfilter(scalar type,
series *depVar, series *h, series *e,
matrix *mReg, matrix *vReg,
scalar p, scalar q, matrix *parameters,
matrix *DH[null], matrix *DE[null])
ascore = exists(DH) && exists(DE)
if type < 7 # aparch
if ascore
err = aparchFilter(&depVar, &h, &e, &mReg, &vReg, p, q,
¶meters, has_asymm_fx(type), &DH, &DE)
else
err = aparchFilter(&depVar, &h, &e, &mReg, &vReg, p, q,
¶meters, has_asymm_fx(type))
endif
elif type == 7
err = egarchFilter(&depVar, &h, &e, &mReg, &vReg, p, q, ¶meters)
else
err = 1
endif
return err
end function
function matrix do_score(series *de, series *dh, matrix *DE, matrix *DH,
matrix *dd)
ret = {}
matrix mde = misszero(de)
matrix mdh = misszero(dh)
# printf "rows(mde) = %d, rows(mdh) = %d\n", rows(mde), rows(mdh)
# printf "rows(DE) = %d, rows(DH) = %d\n", rows(DE), rows(DH)
# printf "%16.9f\n", mde[1:10] ~ DE[1:10,]
# printf "%16.9f\n", mdh[1:10] ~ DH[1:10,]
ret = (mde .* DE + mdh .* DH) ~ dd
return ret
end function
function scalar do_mle(bundle *model, bool verbose)
series depVar = model.y
scalar type = model.type
scalar cdist = model.cdist
list mlX = model.mlistX
list vlX = model.vlistX
scalar p = model.p
scalar q = model.q
scalar nmX = model.mk
scalar nvX = model.vk
scalar err = 0
series h, e, ll
mleString = "-"
if verbose
string mleString += "v"
else
string mleString += "q"
endif
if model.vcvtype == 0 # robust
string mleString += "r"
elif model.vcvtype == 1 # hessian
string mleString += "h"
# otherwise opg
endif
if mleString == "-"
mleString = ""
endif
fulltheta = model.coeff
inipar = fulltheta
sel = model.active
theta = fulltheta[sel]
filtpar_end = rows(fulltheta) - n_cdist_par(cdist)
mX = model.mX
if model.vX_QR == 1
vX = model.QvX
ini = model.mk+1
fin = ini+model.vk-1
theta[ini:fin] = model.vX_R * theta[ini:fin]
else
vX = model.vX
endif
set warnings off
# experimental
set bfgs_toler 1.0e-13
matrix DH = {}
matrix DE = {}
series dh = NA
series de = NA
matrix dd = {}
matrix score = NA
if !ascore_ok(type, cdist)
catch mle loglik = ll
# put the newly estimated values into the full params vector
fulltheta[sel] = theta
filtpar = fulltheta[1:filtpar_end]
matrix dpar = distpar(cdist, fulltheta)
# FILTER
err = gfilter(type, &depVar, &h, &e, &mX, &vX, p, q, &filtpar)
ll = err ? NA : gig_loglik(&e, &h, cdist, dpar, &de, &dh, &dd)
params theta
end mle @mleString
err = $error
else
catch mle loglik = ll
# put the newly estimated values into the full params vector
fulltheta[sel] = theta
filtpar = fulltheta[1:filtpar_end]
matrix dpar = distpar(cdist, fulltheta)
# FILTER
err = gfilter(type, &depVar, &h, &e, &mX, &vX, p, q, &filtpar, &DH, &DE)
ll = err ? NA : gig_loglik(&e, &h, cdist, dpar, &de, &dh, &dd)
# SCORE
score = do_score(&de, &dh, &DE, &DH, &dd)
deriv theta = score
end mle @mleString --no-gradient-check
err = $error
endif
# err = gfilter(type, &depVar, &h, &e, &mX, &vX, p, q, &filtpar, &DH, &DE)
# score = do_score(&de, &dh, &DE, &DH, &dd)
# printf "Score:\n%20.10f\n", sumc(score)
if (err==0)
matrix crit = {$lnl; $aic; $bic; $hqc}
matrix V = $vcv
else
matrix crit = zeros(4,1)
npar = rows(theta)
matrix V = zeros(npar, npar)
endif
gig_packResults(&model, err, theta, &h, &e, inipar, V, crit)
return err
end function
|