File: gig_mle.inp

package info (click to toggle)
gretl 2022c-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 59,552 kB
  • sloc: ansic: 409,074; sh: 4,449; makefile: 3,222; cpp: 2,777; xml: 599; perl: 364
file content (552 lines) | stat: -rw-r--r-- 13,454 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
function series ln_pdf_skt(series *u, scalar df, scalar ht_skew)
    series ret = NA

    if (df>2) 
	# sqrt(pi) = 1.77245385090551602729816748334
        scalar q = lngamma((df+1)/2) - lngamma(df/2)
	scalar c = exp(q)/(sqrt(df-2)*1.77245385090551602729816748334)

	scalar a = 4 * ht_skew * c * ((df-2)/(df-1))
	scalar b = sqrt(1 + 3*ht_skew^2 - a^2)
	series d = (b*u + a)
	d = (d<0) ? d/(1-ht_skew) : d/(1+ht_skew)
	ret = log(b) + log(c) - ((df+1)/2) * log(1+(d^2/(df-2)))
    endif

    return ret
end function

function series ln_pdf_skged(series *x, scalar ni, scalar ta)
    scalar p  = 1/ni

    lgp  = lngamma(p)
    lg2p = lngamma(2*p)
    lg3p = lngamma(3*p)
    tap1 = 1 + ta    
    tam1 = 1 - ta    

    scalar beta = 0.5 * exp(lg3p - lgp) * (tap1^3 + tam1^3) - \
        4*ta^2 * exp(2 * (lg2p - lgp))
    beta = sqrt(beta)

    # m: mode
    scalar m = - 2*ta/beta * exp( lg2p - lgp )
    scalar lnorm = log(0.5 * beta) - lngamma(p+1)

    series z = (x<m) ? (m-x)*beta/tam1 : (x-m)*beta/tap1 
    ret = lnorm - (z^ni)
    return ret
end function


/*
 * One-size-fits-all Loglikelihood function
 */

function series gig_loglik(series *e, series *h, scalar distrType, 
			   matrix addpar, series *de, series *dh, 
			   matrix *dd)
    series ret = NA
    de = NA
    dh = NA
    dd = {}

    if distrType == 0 # Normal
	series u = e/h
        ret = -.91893853320467274177 - 0.5*(log(h) + e*u)
	de = -u
	dh = -0.5/h * (1 - e*u)

    elif distrType == 1 # Student's t
	scalar ni = addpar[1]
	if (ni>2)

            # series hadj = sqrt(h*(1-2/ni))
            # series u = e/hadj
	    # ret = log(pdf(t, ni, u)/hadj)

	    series e2 = e*e
	    scalar K1 = lngamma((ni+1)/2) - lngamma(ni/2) - 0.5*log($pi*(ni-2))
	    series ret = K1 - 0.5 * log(h) - 0.5*(ni+1) * log(1 + e2/(h*(ni-2)))

	    series den = e2 + (ni-2)*h
	    de = - (ni + 1) * e / den
	    dh = 0.5/h  * ((ni + 1)* e2 / den - 1)

	    scalar k1 = digamma((ni+1)/2) - digamma(ni/2) - 1/(ni-2)
	    series s1 = (ni + 1)/(ni - 2) * e2/den
	    series s2 = log(1 + e2/(h*(ni-2)))

	    matrix dd = 0.5*(k1 + s1 - s2)
	endif

    elif distrType == 2 # GED
	scalar ni = addpar[1]
	if (ni>0) 
	    scalar p = 1/ni
	    scalar lg1 = lngamma(p)
	    scalar lg3 = lngamma(3*p)
	    
	    scalar lC = log(ni/2) + 0.5*(lg3 - 3*lg1)
	    scalar k = exp(0.5*(lg1-lg3)) * (0.5^p)
	    series u = abs(e)/(k*sqrt(h))
	    ret = lC - 0.5*(u^ni + log(h))
	endif
	
    elif distrType == 3 # Skewed-T
	scalar ni = addpar[1]
	if (ni>2) 
	    series u = e/sqrt(h)
	    alpha    = tanh(addpar[2])
	    ret      = ln_pdf_skt(&u, ni, alpha) - 0.5*log(h)
	endif

    elif distrType == 4 # Skewed-GED
	scalar ni = addpar[1]
	if (ni>0) 
	    series u = e/sqrt(h)
	    alpha    = tanh(addpar[2])
	    ret      = ln_pdf_skged(&u, ni, alpha) - 0.5*log(h)
	endif

    endif

    return ret
end function

/*
 * Computes conditional variance and errors for the APARCH model.
 * Returns an error code if any of the parameters is out of its domain.
 */

function scalar aparchFilter(series *depVar, series *h, series *e, 
			     matrix *mReg, matrix *vX, 
			     scalar p, scalar q, matrix *parameters,
			     scalar is_asymmetric,
			     matrix *deriv_h[null], matrix *deriv_e[null])

   nmX = cols(mReg)
   nvX = cols(vX)
   scalar base = nmX + nvX

   a0pos = base + 1
   a1pos = a0pos + q -1
   g0pos = a1pos + 1
   g1pos = g0pos + q - 1
   b0pos = g1pos + 1
   b1pos = b0pos + p - 1
   dpos  = b1pos + 1

   matrix avec = {0}
   matrix gvec = {0}
   matrix bvec = {0}

   matrix omegas = parameters[nmX+1:base]

   if q > 0
       matrix avec = parameters[a0pos:a1pos]
       matrix gvec = parameters[g0pos:g1pos]
   endif

   if p > 0
       matrix bvec = parameters[b0pos:b1pos]
   endif

   delta = parameters[dpos]

   err = 0

   # Checking
   # checks on alpha & beta are disabled
   err = err || ((nvX==1) && omegas[1] < 0)
#  err = err || (sumc(avec) + sumc(bvec)) > 1
#  err = err || minc(avec | bvec) < 0
   err = err || delta <= 0
   # shape? gamma?

   minh = 0

   if err == 0
       # handle the conditional mean first
       if nmX > 0
           series e = depVar - (mReg * parameters[1:nmX])
       else
           series e = depVar
       endif
       scalar e0 = mean(e^2)

       matrix tmp_ae = mlag({abs(e)}, seq(1,q), e0 ^ (1/delta))
       if is_asymmetric == 1
	   elag = mlag({e}, seq(1,q))
       	   tmp_ae -= elag .* gvec'
       endif

       # Raising a negative value to a non-integer 
       # produces a complex number
       err = (delta != floor(delta)) && (minc(minr(tmp_ae)) < 0) 
       if (!err)
	   Kd = tmp_ae .^ delta
	   series h = Kd * avec
	   
	   # Var regressors
	   if (nvX>1)
	       series h += vX * omegas 
	   else
	       series h += omegas[1]
	   endif

	   if p>0
	       h = filter(h, null, bvec, e0)
	   endif

	   err = min(h)<0 || max(!ok(h))
	   # the loglikelihood function needs sigma^2
	   if !err && (delta != 2)
	       h = h^(2/delta)
	   endif
       endif
   endif

   if (!err && exists(deriv_h) && exists(deriv_e))
       # FIXME: incomplete and experimental --------------------------------
       #
       # deriv_e and deriv_h should contain (eventually), the derivatives
       # of (doh!) e and h, WITH RESPECT TO THE PARAMETERS
       # what we have atm is a rough attempt to have it working in the GARCH 
       # case; we'll see about generalising it later

       # ----------- mean eq. --------------
       if nmX > 0
    	   deriv_e = -mReg
       else
    	   deriv_e = {}
       endif

       scalar zcols = nvX + p + q * (1+is_asymmetric)
       deriv_e ~= zeros(rows(vX), zcols)

       # ----------- var eq. ---------------
       # omega comes 2nd from last 
       # mu comes last 
       
       # alphas
       me = Kd
       matrix eeff = tmp_ae.^(delta-1)

       if is_asymmetric == 1 # deltas
       	   mh = -delta .* eeff .* ( elag .* avec' )
	   me ~= mh
       endif

       if (p > 0) # betas
	   mh = mlag({h}, seq(1, p), e0)
           me ~= mh
       endif
       
       dr = rows(me) - rows(vX)
       if (dr>0) 
	   deriv_h = ( zeros(dr, cols(vX)) | vX ) ~ me
       else
	   deriv_h = vX ~ me
       endif

       if nmX > 0 
	   series tmpser = (e>0) ? -1 : 1
	   matrix sgn = {tmpser}

	   matrix mfocs = meanc({e} .* mReg)
	   matrix dmu = zeros(rows(deriv_h), nmX)

	   loop for i = 1 .. q
	       matrix focs = eeff[,i] .* mlag(mReg, i)
	       matrix tmpmat = (mlag(sgn, i) + gvec[i]) .* focs
	       dmu += avec[i] .* tmpmat
	   endloop
	   dmu = dmu .* delta

	   dmu[1,] = -2*mfocs*sumc(avec|bvec)
	   deriv_h = dmu ~ deriv_h
       endif

       if p > 0
	   loop for i = 1 .. cols(deriv_h)
	       series tmpser = deriv_h[,i]
	       tmpser = filter(tmpser, null, bvec)
	       deriv_h[,i] = tmpser
	   endloop
       endif	   

       if (delta != 2)
	   deriv_h =  h^(delta/2) .* deriv_h .* (2/delta)
       endif
   endif
   # -------------------------------------------------------------------

   return err

end function

/*
 * Computes conditional variance and errors for the EGARCH model.
 * Returns an error code if any of the parameters is out of its domain. 
 */
function scalar egarchFilter(series *y, series *h, series *u, \
 			     matrix *mReg, matrix *vReg, \
 			     scalar p, scalar q, matrix *params)

    scalar n_mX = cols(mReg)
    scalar n_vX = cols(vReg)
    scalar err = 0

    if n_mX == 0
	series e = y
    else
        series e = y - (mReg * params[1:n_mX])
    endif

    series u = misszero(e) # Reassigns residuals for the next computation
    scalar omegaini = n_mX + 1
    scalar base = n_mX + n_vX
    if n_vX == 1
	series omega = params[omegaini]
    else
	series omega = vReg * params[omegaini:base]
    endif
    
    series logh = log(var(e))
    
    # ERRORS
    series d = (e>0)
    series ae = abs(e)
    
    if (p == 0) && (q<3)
    	if q == 1
    	    scalar g = params[base+1]
    	    scalar a = params[base+2]
    	    series tmp = d(-1) ? (g+a) : (g-a)
    	    series logh = omega + tmp*ae(-1)/exp(logh(-1)*0.5)
    	elif q == 2
    	    scalar g1 = params[base+1]
    	    scalar g2 = params[base+2]
    	    scalar a1 = params[base+3]
    	    scalar a2 = params[base+4]
    	    series tmp1 = d(-1) ? (g1+a1) : (g1-a1)
    	    series tmp2 = d(-2) ? (g2+a2) : (g2-a2)
    	    series logh = omega + tmp1*ae(-1)/exp(logh(-1)*0.5) \
    		+ tmp2*ae(-2)/exp(logh(-2)*0.5)
    	endif
    elif (p == 1) && (q<3)
    	if q == 1
    	    scalar g = params[base+1]
    	    scalar a = params[base+2]
    	    scalar b = params[base+3]
	    if (b<1)
    		series tmp = d(-1) ? (g+a) : (g-a)
    		series logh = omega + tmp*ae(-1)/exp(logh(-1)*0.5) + b*logh(-1)
	    else
		err = 1
	    endif

    	elif q == 2
    	    scalar g1 = params[base+1]
    	    scalar g2 = params[base+2]
    	    scalar a1 = params[base+3]
    	    scalar a2 = params[base+4]
    	    scalar b  = params[base+5]
    	    series tmp1 = d(-1) ? (g1+a1) : (g1-a1)
    	    series tmp2 = d(-2) ? (g2+a2) : (g2-a2)
    	    series logh = omega + tmp1*ae(-1)/exp(logh(-1)*0.5)) \
    		+ tmp2*ae(-2)/exp(logh(-2)*0.5)) \
    		+ b*logh(-1)
    	endif
    else
        string evalstr = "omega"
    
        loop for i = 1 .. q
    	    scalar a$i = params[base+i]
            scalar g$i = params[base+i+p+q]
    	    evalstr += " + a$i*abs(e(-$i)/exp(logh(-$i)*0.5)) + g$i*e(-$i)/exp(logh(-$i)*0.5)"
        endloop
    
        loop for i = 1 .. p
    	    scalar b$i = params[base+p+i]
    	    evalstr += " + b$i*logh(-$i)"
        endloop
    
        series logh = @evalstr
    endif

    if (!err) 
	if max(logh) > 100
	    #Overflow check
	    logh = NA
	else
	    h = exp(logh)
	endif
    endif

    return err
    
end function

function scalar gfilter(scalar type, 
			series *depVar, series *h, series *e, 
 			matrix *mReg, matrix *vReg, 
 			scalar p, scalar q, matrix *parameters, 
			matrix *DH[null], matrix *DE[null])

    ascore = exists(DH) && exists(DE)

    if type < 7 # aparch
	if ascore
	    err = aparchFilter(&depVar, &h, &e, &mReg, &vReg, p, q, 
			       &parameters, has_asymm_fx(type), &DH, &DE)
	else
	    err = aparchFilter(&depVar, &h, &e, &mReg, &vReg, p, q, 
			       &parameters, has_asymm_fx(type))
	endif

    elif type == 7
	err = egarchFilter(&depVar, &h, &e, &mReg, &vReg, p, q, &parameters)
    else
	err = 1
    endif

    return err

end function

function matrix do_score(series *de, series *dh, matrix *DE, matrix *DH,
			 matrix *dd)
    ret = {}

    matrix mde = misszero(de)
    matrix mdh = misszero(dh)

#    printf "rows(mde) = %d, rows(mdh) = %d\n", rows(mde), rows(mdh)
#    printf "rows(DE)  = %d, rows(DH)  = %d\n", rows(DE), rows(DH)

#    printf "%16.9f\n", mde[1:10] ~ DE[1:10,]
#    printf "%16.9f\n", mdh[1:10] ~ DH[1:10,]
 
    ret = (mde .* DE + mdh .* DH) ~ dd
    
    return ret
end function

function scalar do_mle(bundle *model, bool verbose)

    series depVar = model.y
    scalar type = model.type

    scalar cdist = model.cdist

    list mlX = model.mlistX
    list vlX = model.vlistX

    scalar p = model.p
    scalar q = model.q

    scalar nmX 	= model.mk
    scalar nvX 	= model.vk

    scalar err 	= 0
    series h, e, ll

    mleString = "-"

    if verbose
	string mleString += "v"
    else
	string mleString += "q"
    endif
	
    if model.vcvtype == 0 # robust
	string mleString += "r"
    elif model.vcvtype == 1 # hessian
	string mleString += "h"
	# otherwise opg 
    endif

    if mleString == "-"
	mleString = ""
    endif

    fulltheta = model.coeff
    inipar = fulltheta
    sel = model.active
    theta = fulltheta[sel] 

    filtpar_end = rows(fulltheta) - n_cdist_par(cdist)

    mX = model.mX
    if model.vX_QR == 1
	vX = model.QvX
	ini = model.mk+1
	fin = ini+model.vk-1
	theta[ini:fin] = model.vX_R * theta[ini:fin]
    else
	vX = model.vX
    endif

    set warnings off

    # experimental
    set bfgs_toler 1.0e-13

    matrix DH = {}
    matrix DE = {}
    series dh = NA
    series de = NA
    matrix dd = {}
    matrix score = NA

    if !ascore_ok(type, cdist)
	catch mle loglik = ll 
            # put the newly estimated values into the full params vector
	    fulltheta[sel] = theta
	    filtpar = fulltheta[1:filtpar_end]
	    matrix dpar = distpar(cdist, fulltheta)
	    
	    # FILTER
	    err = gfilter(type, &depVar, &h, &e, &mX, &vX, p, q, &filtpar)
	    ll = err ? NA : gig_loglik(&e, &h, cdist, dpar, &de, &dh, &dd)

	    params theta
	end mle @mleString
	err = $error
    else
	catch mle loglik = ll 
            # put the newly estimated values into the full params vector
	    fulltheta[sel] = theta
	    filtpar = fulltheta[1:filtpar_end]
	    matrix dpar = distpar(cdist, fulltheta)
	    
	    # FILTER
	    err = gfilter(type, &depVar, &h, &e, &mX, &vX, p, q, &filtpar, &DH, &DE)
	    ll = err ? NA : gig_loglik(&e, &h, cdist, dpar, &de, &dh, &dd)
	    
	    # SCORE
	    score = do_score(&de, &dh, &DE, &DH, &dd)
	    deriv theta = score
	end mle @mleString --no-gradient-check
	err = $error
    endif

  # err = gfilter(type, &depVar, &h, &e, &mX, &vX, p, q, &filtpar, &DH, &DE)
  # score = do_score(&de, &dh, &DE, &DH, &dd)
  # printf "Score:\n%20.10f\n", sumc(score)
    
    if (err==0)
	matrix crit = {$lnl; $aic; $bic; $hqc}
	matrix V = $vcv
    else
	matrix crit = zeros(4,1)
	npar = rows(theta)
	matrix V = zeros(npar, npar)
    endif

    gig_packResults(&model, err, theta, &h, &e, inipar, V, crit)

    return err
end function