1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
function void ivp_print (bundle *b)
matrix result = b["coeff"] ~ b["stderr"]
scalar case = b["case"]
scalar N = 0
if case == 1
printf "\nFixed-effects TSLS, using %d observations\n", b["nobs"]
elif case == 2
printf "\nBetween TSLS, N = %d\n", b["nobs"]
else
printf "\nG2SLS random effects, using %d observations\n", b["nobs"]
endif
printf "Dependent variable: %s\n", b["ystr"]
printf "Endogenous: %s\n", b["Estr"]
printf "Instruments: %s\n", b["Istr"]
string S = b["modstr"]
modprint result S
printf " SSR = %g\n", b["SSR"]
printf " sigma-hat = %g (df = %d)\n", b["sigma"], b["df"]
printf " R-squared = corr(y, yhat)^2 = %f\n", b["rsq"]
if (case == 1 || case == 3)
matrix dims = b["dims"]
N = dims[1]
printf " Included units = %d\n", N
printf " Time-series length: min = %d, max = %d\n", dims[2], dims[3]
endif
scalar X2 = b["wald"]
scalar df = rows(b["coeff"]) - 1
scalar pv = pvalue(X, df, X2)
printf " Wald chi-square(%d) = %g [%.4f]\n", df, X2, pv
if inbundle(b, "Fpool")
# poolability F-test for fixed effects
scalar Fp = b["Fpool"]
scalar dfn = N-1
scalar dfd = b["df"]
pv = pvalue(F, dfn, dfd, Fp)
printf " Null hypothesis: The groups have a common intercept\n"
printf " Test statistic: F(%d, %d) = %g [%.4f]\n", dfn, dfd, Fp, pv
endif
printf "\n"
end function
/* computes R-squared as the squared correlation between
y and yhat: we may want to do something else, or nothing
*/
function scalar tsls_rsq (const matrix y, const matrix yh)
scalar r = corr(y, yh)
return r^2
end function
/*
panel_means_matrix: given the NT x k data matrix X and the
NT x 1 matrix u, which records the panel unit ID associated
with each row of X, returns an N x k matrix holding the
unit/group means of the columns of X. We want this for the
between model.
*/
function matrix panel_means_matrix (const matrix X, const matrix u)
scalar NT = rows(X)
matrix e = seq(1, NT)'
matrix vU = values(u)
scalar N = rows(vU)
matrix umean = zeros(N, cols(X))
loop i=1..N -q
matrix sel = selifr(e, u .= vU[i])
umean[i,] = meanc(X[sel,])
endloop
return umean
end function
/* Replace the columns of X with group mean minus grand mean:
we want this for the poolability F-test for fixed effects
*/
function void get_panel_means (matrix *X, const matrix u)
matrix grand = meanc(X)
matrix e = seq(1, rows(X))'
matrix vU = values(u)
scalar N = rows(vU)
scalar k = cols(X)
scalar Ti
loop i=1..N -q
matrix sel = selifr(e, u .= vU[i])
Ti = rows(sel)
matrix tmp = X[sel,]
X[sel,] = zeros(Ti, k) .+ (meanc(tmp) - grand)
endloop
end function
/*
real_panel_demean: removes the group means and adds back
the grand mean for all columns of the NT x k matrix X. The
input matrix u (NT x 1) must record the panel unit ID associated
with each row of X.
Fills out dims with the number of included groups and the
minimum and maximum group time-series lengths.
*/
function void real_panel_demean (matrix *X, const matrix u,
matrix *dims)
matrix grand = meanc(X)
scalar NT = rows(X)
matrix e = seq(1, NT)'
matrix vU = values(u)
scalar N = rows(vU)
scalar minT = NT
scalar maxT = 0
loop i=1..N -q
matrix sel = selifr(e, u .= vU[i])
scalar Ti = rows(sel)
minT = (Ti < minT) ? Ti : minT
maxT = (Ti > maxT) ? Ti : maxT
matrix tmp = X[sel,]
X[sel,] = tmp .+ (grand - meanc(tmp))
endloop
dims = {N, minT, maxT}
end function
/* panel-demean X "in place" and return dims vector */
function matrix panel_demean_1 (matrix *X, const matrix *u)
matrix dims
real_panel_demean(&X, u, &dims)
return dims
end function
/* panel-demean X into ret, preserving X; return ret
and fill out dims argument.
*/
function matrix panel_demean_2 (const matrix X, const matrix u,
matrix *dims)
matrix ret = X
real_panel_demean(&ret, u, &dims)
return ret
end function
/*
Note: Z may be rank-deficient; this is not a problem _per se_,
as long as \hat{X} is full rank. In order to accommodate
potentially rank-deficient instrument matrices, we use the QR
decomposition so redundant columns can be softly killed (à la
Burt Bacharach).
We then guard against the possibility of \hat{X} not having
full column rank by using the generalised inverse. This, of
course, is not particularly useful if we want an estimator
(it's under-identified) but comes in handy if all we need is
the residuals vector.
*/
function matrix matrix_tsls (const matrix y, matrix *X, matrix *Z,
matrix *V[null], matrix *S1[null])
matrix R
matrix Q = qrdecomp(Z, &R)
if exists(S1)
# write first-stage fitted values into S1
S1 = Q*Q'S1
endif
matrix XQ = X'Q
matrix Qy = Q'y
matrix nonzero = (abs(R[diag]) .> 1.0e-12)'
if minr(nonzero) == 1
V = invpd(XQ * XQ')
ret = V * (XQ * Qy)
else
R = selifc(R, nonzero)
P = qform(R, invpd(R'R))
V = ginv(qform(XQ, P))
ret = V * (XQ * (P * Qy))
endif
return ret
end function
/* Compute restricted SSR for poolability test */
function scalar get_SSRr (const matrix y, const matrix X)
matrix u
matrix b = mols(y, X, &u)
return u'u
end function
function scalar panel_sigma (const matrix All, int k,
const matrix endocols,
const matrix exocols,
int ng, int code)
# break out the various required sub-matrices
matrix my = All[,1]
matrix mX = All[,2:k+1]
matrix Endo = mX[,endocols]
matrix mZ = mX[,exocols] ~ All[,k+2:]
# compute IV estimator
matrix beta = matrix_tsls(my, &mX, &mZ)
n = rows(mX)
dfk = cols(mX)
loop i=1..k -q
dfk -= isconst(mX[,i])
endloop
# compute residuals etc
matrix U = my - mX * beta
if code == 1 # fixed effects
scalar df = n - dfk - ng
elif code == 2 # between
scalar df = ng - dfk - 1
else # straight TSLS
scalar df = n - dfk - 1
endif
return sqrt(U'U / df)
end function
function scalar all_varying (list X, list Z)
scalar ret = 1
X -= 0
loop foreach i X -q
if isconst(X.$i, 0)
printf "$i is not time-varying\n"
ret = 0
endif
endloop
Z -= 0
loop foreach i Z -q
if isconst(Z.$i, 0)
printf "$i is not time-varying\n"
ret = 0
endif
endloop
return ret
end function
function bundle ivpanel (series y "dependent variable",
list X "regressors",
list Z "instruments",
int case[1:3:1] {"Fixed effects", "Between model", "G2SLS"},
bool quiet[0])
bundle b
scalar Fpnum = NA
# ensure we have a constant in first place in both lists
X = 0 || X
Z = 0 || Z
list D = dropcoll(X)
if nelem(X - D) > 0
printf "Regressor(s) %s dropped for collinearity\n", varname(X-D)
X = D
endif
list D = dropcoll(Z)
if nelem(Z - D) > 0
printf "Instrument(s) %s dropped for collinearity\n", varname(Z-D)
Z = D
endif
scalar nendo = nelem(X - Z)
scalar ninst = nelem(Z - X)
if nendo > ninst
funcerr "Order condition for identification is not satisfied"
endif
# fixed effects: test for time variation
if case == 1 && !all_varying(X, Z)
funcerr "Fixed effects: all regressors and instruments must be time-varying"
endif
# construct string for printing coeffs
string Xstr = varname(X)
# and the name of the dependent variable
string ystr = argname(y)
if strlen(ystr) == 0
ystr = "anonymous"
endif
# record cols for endogenous and exogenous regressors
scalar k = nelem(X)
matrix endocols = zeros(1, nendo)
matrix exocols = zeros(1, k - nendo)
scalar ce = 1
scalar cx = 1
loop foreach i X -q
if (inlist(Z, X.$i))
exocols[cx] = i
cx++
else
endocols[ce] = i
ce++
endif
endloop
# list of all vars
list Lbig = y X || Z
# create big data matrix and transform it
series msk = ok(Lbig)
set matrix_mask msk
matrix All = {Lbig}
matrix u = {$unit}
if (u[1] > 1)
# handle sample offset
u -= u[1] - 1
endif
if case == 1 # within, fixed-effects
matrix dims = panel_demean_1(&All, &u)
scalar N = dims[1]
scalar NT = rows(All)
elif case == 2 # between
All = panel_means_matrix(All, u)
scalar N = rows(values(u))
NT = N
elif case == 3 # G2SLS
matrix dims
matrix X1 = panel_demean_2(All, u, &dims)
scalar N = dims[1]
scalar NT = rows(X1)
sw = panel_sigma(X1, k, endocols, exocols, N, 1)
matrix X2 = panel_means_matrix(All, u)
sb = panel_sigma(X2, k, endocols, exocols, N, 2)
if !quiet
printf "sigma-hat(within) = %.8g\n", sw
printf "sigma-hat(between) = %.8g\n", sb
endif
# total s^2 for comparison
# stot = panel_sigma(All, k, endocols, exocols, N, 3)
# printf "stot = %.8g\n", stot
All = (X1/sw) | (X2/sb)
endif
# break out the various required sub-matrices
matrix my = All[,1]
matrix mX = All[,2:k+1]
matrix Endo = mX[,endocols]
matrix mZ = mX[,exocols] ~ All[,k+2:]
k = cols(mX)
delete All
# compute IV estimator plus residuals etc
matrix V
if case == 1
matrix S1 = mX[,endocols]
matrix beta = matrix_tsls(my, &mX, &mZ, &V, &S1)
else
matrix beta = matrix_tsls(my, &mX, &mZ, &V)
endif
matrix U = my - mX * beta
if case == 1
# FE: components for poolability F-test
mX[,endocols] = S1
matrix u1 = my - mX * beta
scalar SSRu = u1'u1
matrix y0 = {y}
matrix X0 = {X}
matrix S0 = X0[,endocols]
get_panel_means(&S0, u)
X0[,endocols] = S1 + S0
scalar SSRr = get_SSRr(y0, X0)
Fpnum = SSRr - SSRu
# end F-test stuff
scalar df = NT - k - N + 1
elif case == 2
scalar df = N - k
else
scalar df = NT - k
endif
scalar SSR = U'U
scalar s2 = SSR / df
matrix V *= s2
matrix se = sqrt(diag(V))
scalar wald = qform(beta[2:,]', invpd(V[2:,2:]))
if case == 3
my = my[1:NT]
U = U[1:NT]
endif
matrix yhat = my - U
scalar rsq = tsls_rsq(my, yhat)
# lists of endog vars and additional instruments
list tmp = X - Z
string Estr = strsub(varname(tmp), ",", " ")
tmp = Z - X
string Istr = strsub(varname(tmp), ",", " ")
# assemble bundle for return
b["nobs"] = NT
b["coeff"] = beta
b["stderr"] = se
b["vcv"] = V
b["SSR"] = SSR
b["sigma"] = sqrt(s2)
b["df"] = df
b["rsq"] = rsq
b["wald"] = wald
b["modstr"] = Xstr
b["ystr"] = ystr
b["Estr"] = Estr
b["Istr"] = Istr
b["uhat"] = U
b["yhat"] = yhat
b["case"] = case
if (case == 1 || case == 3)
b["dims"] = dims
endif
if ok(Fpnum)
b["Fpool"] = (Fpnum/SSR) * df/(N-1)
endif
if quiet
print "ivpanel: OK"
else
ivp_print(&b)
endif
return b
end function
function bundle GUI_ivpanel (series y "dependent variable",
list X "regressors",
list Z "instruments",
int case[1:3:1] {"Fixed effects", "Between model", "G2SLS"})
bundle b = ivpanel(y, X, Z, case)
return b
end function
|