1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
|
/**
* @file SFMT.c
* @brief SIMD oriented Fast Mersenne Twister(SFMT)
*
* @author Mutsuo Saito (Hiroshima University)
* @author Makoto Matsumoto (Hiroshima University)
*
* Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University.
* Copyright (C) 2012 Mutsuo Saito, Makoto Matsumoto, Hiroshima
* University and The University of Tokyo.
* Copyright (C) 2013 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University.
* All rights reserved.
*
* The 3-clause BSD License is applied to this software, see
* LICENSE.txt
*/
#if defined(__cplusplus)
extern "C" {
#endif
#include <string.h>
#include <assert.h>
#include "SFMT.h"
#include "SFMT-params.h"
#include "SFMT-common.h"
#if defined(__BIG_ENDIAN__) && !defined(__amd64) && !defined(BIG_ENDIAN64)
#define BIG_ENDIAN64 1
#endif
#if defined(HAVE_ALTIVEC) && !defined(BIG_ENDIAN64)
#define BIG_ENDIAN64 1
#endif
#if defined(ONLY64) && !defined(BIG_ENDIAN64)
#if defined(__GNUC__)
#error "-DONLY64 must be specified with -DBIG_ENDIAN64"
#endif
#undef ONLY64
#endif
/* AC, 2020-05-23: hush warnings from gcc 10 */
#define gen_rand_array_inline 0
/*----------------
STATIC FUNCTIONS
----------------*/
inline static int idxof(int i);
#if gen_rand_array_inline
inline static void gen_rand_array(sfmt_t * sfmt, w128_t *array, int size);
#else
static void gen_rand_array(sfmt_t * sfmt, w128_t *array, int size);
#endif
inline static uint32_t func1(uint32_t x);
inline static uint32_t func2(uint32_t x);
static void period_certification(sfmt_t * sfmt);
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
inline static void swap(w128_t *array, int size);
#endif
#if defined(HAVE_ALTIVEC)
#include "SFMT-alti.h"
#elif defined(HAVE_SSE2)
/**
* parameters used by sse2.
*/
static const w128_t sse2_param_mask = {{SFMT_MSK1, SFMT_MSK2,
SFMT_MSK3, SFMT_MSK4}};
#if defined(_MSC_VER)
#include "SFMT-sse2-msc.h"
#else
#include "SFMT-sse2.h"
#endif
#endif
/**
* This function simulate a 64-bit index of LITTLE ENDIAN
* in BIG ENDIAN machine.
*/
#ifdef ONLY64
inline static int idxof(int i) {
return i ^ 1;
}
#else
inline static int idxof(int i) {
return i;
}
#endif
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
/**
* This function fills the user-specified array with pseudorandom
* integers.
*
* @param sfmt SFMT internal state
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param size number of 128-bit pseudorandom numbers to be generated.
*/
#if gen_rand_array_inline
inline static void gen_rand_array(sfmt_t * sfmt, w128_t *array, int size) {
#else
static void gen_rand_array(sfmt_t * sfmt, w128_t *array, int size) {
#endif
int i, j;
w128_t *r1, *r2;
r1 = &sfmt->state[SFMT_N - 2];
r2 = &sfmt->state[SFMT_N - 1];
for (i = 0; i < SFMT_N - SFMT_POS1; i++) {
do_recursion(&array[i], &sfmt->state[i], &sfmt->state[i + SFMT_POS1], r1, r2);
r1 = r2;
r2 = &array[i];
}
for (; i < SFMT_N; i++) {
do_recursion(&array[i], &sfmt->state[i],
&array[i + SFMT_POS1 - SFMT_N], r1, r2);
r1 = r2;
r2 = &array[i];
}
for (; i < size - SFMT_N; i++) {
do_recursion(&array[i], &array[i - SFMT_N],
&array[i + SFMT_POS1 - SFMT_N], r1, r2);
r1 = r2;
r2 = &array[i];
}
for (j = 0; j < 2 * SFMT_N - size; j++) {
sfmt->state[j] = array[j + size - SFMT_N];
}
for (; i < size; i++, j++) {
do_recursion(&array[i], &array[i - SFMT_N],
&array[i + SFMT_POS1 - SFMT_N], r1, r2);
r1 = r2;
r2 = &array[i];
sfmt->state[j] = array[i];
}
}
#endif
#if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(HAVE_ALTIVEC)
inline static void swap(w128_t *array, int size) {
int i;
uint32_t x, y;
for (i = 0; i < size; i++) {
x = array[i].u[0];
y = array[i].u[2];
array[i].u[0] = array[i].u[1];
array[i].u[2] = array[i].u[3];
array[i].u[1] = x;
array[i].u[3] = y;
}
}
#endif
/**
* This function represents a function used in the initialization
* by init_by_array
* @param x 32-bit integer
* @return 32-bit integer
*/
static uint32_t func1(uint32_t x) {
return (x ^ (x >> 27)) * (uint32_t)1664525UL;
}
/**
* This function represents a function used in the initialization
* by init_by_array
* @param x 32-bit integer
* @return 32-bit integer
*/
static uint32_t func2(uint32_t x) {
return (x ^ (x >> 27)) * (uint32_t)1566083941UL;
}
/**
* This function certificate the period of 2^{MEXP}
* @param sfmt SFMT internal state
*/
static void period_certification(sfmt_t * sfmt) {
uint32_t inner = 0;
int i, j;
uint32_t work;
uint32_t *psfmt32 = &sfmt->state[0].u[0];
const uint32_t parity[4] = {SFMT_PARITY1, SFMT_PARITY2,
SFMT_PARITY3, SFMT_PARITY4};
for (i = 0; i < 4; i++) {
inner ^= psfmt32[idxof(i)] & parity[i];
}
for (i = 16; i > 0; i >>= 1) {
inner ^= inner >> i;
}
inner &= 1;
/* check OK */
if (inner == 1) {
return;
}
/* check NG, and modification */
for (i = 0; i < 4; i++) {
work = 1;
for (j = 0; j < 32; j++) {
if ((work & parity[i]) != 0) {
psfmt32[idxof(i)] ^= work;
return;
}
work = work << 1;
}
}
}
/*----------------
PUBLIC FUNCTIONS
----------------*/
#define UNUSED_VARIABLE(x) (void)(x)
/**
* This function returns the identification string.
* The string shows the word size, the Mersenne exponent,
* and all parameters of this generator.
* @param sfmt SFMT internal state
*/
const char *sfmt_get_idstring(sfmt_t * sfmt) {
UNUSED_VARIABLE(sfmt);
return SFMT_IDSTR;
}
/**
* This function returns the minimum size of array used for \b
* fill_array32() function.
* @param sfmt SFMT internal state
* @return minimum size of array used for fill_array32() function.
*/
int sfmt_get_min_array_size32(sfmt_t * sfmt) {
UNUSED_VARIABLE(sfmt);
return SFMT_N32;
}
/**
* This function returns the minimum size of array used for \b
* fill_array64() function.
* @param sfmt SFMT internal state
* @return minimum size of array used for fill_array64() function.
*/
int sfmt_get_min_array_size64(sfmt_t * sfmt) {
UNUSED_VARIABLE(sfmt);
return SFMT_N64;
}
#if !defined(HAVE_SSE2) && !defined(HAVE_ALTIVEC)
/**
* This function fills the internal state array with pseudorandom
* integers.
* @param sfmt SFMT internal state
*/
void sfmt_gen_rand_all(sfmt_t * sfmt) {
int i;
w128_t *r1, *r2;
r1 = &sfmt->state[SFMT_N - 2];
r2 = &sfmt->state[SFMT_N - 1];
for (i = 0; i < SFMT_N - SFMT_POS1; i++) {
do_recursion(&sfmt->state[i], &sfmt->state[i],
&sfmt->state[i + SFMT_POS1], r1, r2);
r1 = r2;
r2 = &sfmt->state[i];
}
for (; i < SFMT_N; i++) {
do_recursion(&sfmt->state[i], &sfmt->state[i],
&sfmt->state[i + SFMT_POS1 - SFMT_N], r1, r2);
r1 = r2;
r2 = &sfmt->state[i];
}
}
#endif
#ifndef ONLY64
/**
* This function generates pseudorandom 32-bit integers in the
* specified array[] by one call. The number of pseudorandom integers
* is specified by the argument size, which must be at least 624 and a
* multiple of four. The generation by this function is much faster
* than the following gen_rand function.
*
* For initialization, init_gen_rand or init_by_array must be called
* before the first call of this function. This function can not be
* used after calling gen_rand function, without initialization.
*
* @param sfmt SFMT internal state
* @param array an array where pseudorandom 32-bit integers are filled
* by this function. The pointer to the array must be \b "aligned"
* (namely, must be a multiple of 16) in the SIMD version, since it
* refers to the address of a 128-bit integer. In the standard C
* version, the pointer is arbitrary.
*
* @param size the number of 32-bit pseudorandom integers to be
* generated. size must be a multiple of 4, and greater than or equal
* to (MEXP / 128 + 1) * 4.
*
* @note \b memalign or \b posix_memalign is available to get aligned
* memory. Mac OSX doesn't have these functions, but \b malloc of OSX
* returns the pointer to the aligned memory block.
*/
void sfmt_fill_array32(sfmt_t * sfmt, uint32_t *array, int size) {
assert(sfmt->idx == SFMT_N32);
assert(size % 4 == 0);
assert(size >= SFMT_N32);
gen_rand_array(sfmt, (w128_t *)array, size / 4);
sfmt->idx = SFMT_N32;
}
#endif
/**
* This function generates pseudorandom 64-bit integers in the
* specified array[] by one call. The number of pseudorandom integers
* is specified by the argument size, which must be at least 312 and a
* multiple of two. The generation by this function is much faster
* than the following gen_rand function.
*
* @param sfmt SFMT internal state
* For initialization, init_gen_rand or init_by_array must be called
* before the first call of this function. This function can not be
* used after calling gen_rand function, without initialization.
*
* @param array an array where pseudorandom 64-bit integers are filled
* by this function. The pointer to the array must be "aligned"
* (namely, must be a multiple of 16) in the SIMD version, since it
* refers to the address of a 128-bit integer. In the standard C
* version, the pointer is arbitrary.
*
* @param size the number of 64-bit pseudorandom integers to be
* generated. size must be a multiple of 2, and greater than or equal
* to (MEXP / 128 + 1) * 2
*
* @note \b memalign or \b posix_memalign is available to get aligned
* memory. Mac OSX doesn't have these functions, but \b malloc of OSX
* returns the pointer to the aligned memory block.
*/
void sfmt_fill_array64(sfmt_t * sfmt, uint64_t *array, int size) {
assert(sfmt->idx == SFMT_N32);
assert(size % 2 == 0);
assert(size >= SFMT_N64);
gen_rand_array(sfmt, (w128_t *)array, size / 2);
sfmt->idx = SFMT_N32;
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
swap((w128_t *)array, size /2);
#endif
}
/**
* This function initializes the internal state array with a 32-bit
* integer seed.
*
* @param sfmt SFMT internal state
* @param seed a 32-bit integer used as the seed.
*/
void sfmt_init_gen_rand(sfmt_t * sfmt, uint32_t seed) {
int i;
uint32_t *psfmt32 = &sfmt->state[0].u[0];
psfmt32[idxof(0)] = seed;
for (i = 1; i < SFMT_N32; i++) {
psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)]
^ (psfmt32[idxof(i - 1)] >> 30))
+ i;
}
sfmt->idx = SFMT_N32;
period_certification(sfmt);
}
/**
* This function initializes the internal state array,
* with an array of 32-bit integers used as the seeds
* @param sfmt SFMT internal state
* @param init_key the array of 32-bit integers, used as a seed.
* @param key_length the length of init_key.
*/
void sfmt_init_by_array(sfmt_t * sfmt, uint32_t *init_key, int key_length) {
int i, j, count;
uint32_t r;
int lag;
int mid;
int size = SFMT_N * 4;
uint32_t *psfmt32 = &sfmt->state[0].u[0];
if (size >= 623) {
lag = 11;
} else if (size >= 68) {
lag = 7;
} else if (size >= 39) {
lag = 5;
} else {
lag = 3;
}
mid = (size - lag) / 2;
memset(sfmt, 0x8b, sizeof(sfmt_t));
if (key_length + 1 > SFMT_N32) {
count = key_length + 1;
} else {
count = SFMT_N32;
}
r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)]
^ psfmt32[idxof(SFMT_N32 - 1)]);
psfmt32[idxof(mid)] += r;
r += key_length;
psfmt32[idxof(mid + lag)] += r;
psfmt32[idxof(0)] = r;
count--;
for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % SFMT_N32)]
^ psfmt32[idxof((i + SFMT_N32 - 1) % SFMT_N32)]);
psfmt32[idxof((i + mid) % SFMT_N32)] += r;
r += init_key[j] + i;
psfmt32[idxof((i + mid + lag) % SFMT_N32)] += r;
psfmt32[idxof(i)] = r;
i = (i + 1) % SFMT_N32;
}
for (; j < count; j++) {
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % SFMT_N32)]
^ psfmt32[idxof((i + SFMT_N32 - 1) % SFMT_N32)]);
psfmt32[idxof((i + mid) % SFMT_N32)] += r;
r += i;
psfmt32[idxof((i + mid + lag) % SFMT_N32)] += r;
psfmt32[idxof(i)] = r;
i = (i + 1) % SFMT_N32;
}
for (j = 0; j < SFMT_N32; j++) {
r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % SFMT_N32)]
+ psfmt32[idxof((i + SFMT_N32 - 1) % SFMT_N32)]);
psfmt32[idxof((i + mid) % SFMT_N32)] ^= r;
r -= i;
psfmt32[idxof((i + mid + lag) % SFMT_N32)] ^= r;
psfmt32[idxof(i)] = r;
i = (i + 1) % SFMT_N32;
}
sfmt->idx = SFMT_N32;
period_certification(sfmt);
}
#if defined(__cplusplus)
}
#endif
|