File: as197.c

package info (click to toggle)
gretl 2025a-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 64,792 kB
  • sloc: ansic: 425,462; sh: 4,916; makefile: 3,251; cpp: 2,777; xml: 606; perl: 364
file content (296 lines) | stat: -rw-r--r-- 6,648 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
static int tw_acf (const double *phi, int p,
                   const double *theta, int q,
		   double *acf, double *cvli, int ma,
		   double *alpha, int mxpq);

#define max0(i,j) ((i)>(j) ? (i) : (j))
#define min0(i,j) ((i)<(j) ? (i) : (j))

#define DSHRINK 0.0625
#define DEXPAND 16.0
#define DCDELTA 4.0

/*
  Algorithm AS 197 Applied Statistics (1984) Vol. 33, No. 1

  Computes a quantity monotonically related to the likelihood
  function of an autoregressive-moving average process,
  expressed as fact * sumsq.

  Sign of the MA coefficients switched to agree with the
  convention followed by gretl; notation revised somewhat
  to be closer to Melard's documentation.
*/

int flikam (const double *phi, int p,
	    const double *theta, int q,
	    const double *w, double *e, int n,
	    double *sumsq, double *fact,
	    double *vw, double *vl, int rp1,
	    double *vk, int r, double toler)
{
    double eps1 = 1.0e-10;
    double detman = 1.0;
    double detcar = 0.0;
    double h2, a, aor, wi;
    double vw0, vl0, alfa, flj;
    int mxpq = max0(p, q);
    int mnpq = min0(p, q);
    int mxpqp1 = mxpq + 1;
    int do_quick = 0;
    int last, loop, jfrom, nexti;
    int i, j, k, ret = 0;

    *sumsq = *fact = 0;

    /* calculation of the autocovariance function of a process with
       unit innovation variance (vw) and the covariance between the
       variable and the lagged innovations (vl).
    */
    ret = tw_acf(phi, p, theta, q, vw, vl, mxpqp1, vk, mxpq);
    if (ret > 0) {
	return ret;
    }

    /* computation of vk */
    vk[0] = vw[0];
    for (k=1; k<r; k++) {
	vk[k] = 0;
	for (j=k; j<p; j++) {
	    vk[k] += phi[j] * vw[j+1-k];
	}
	for (j=k; j<=q; j++) {
	    vk[k] += theta[j-1] * vl[j-k];
	}
    }

    /* computation of the initial vectors (vl, vk) */
    h2 = vk[0];
    if (h2 <= eps1) {
	return 8; /* fault code */
    }
    vl[r-1] = 0;
    for (j=0; j<r; j++) {
        vw[j] = 0;
	if (j < r-1) {
	    vl[j] = vk[j+1];
	}
	if (j < p) {
	    vl[j] += phi[j] * h2;
	}
	vk[j] = vl[j];
    }

    /* exit if no observations */
    if (n <= 0) {
	return 9; /* fault code */
    }

    /* initialization for loop */
    last = p - q;
    loop = p;
    jfrom = p;
    vw[p] = 0;
    vl[mxpq] = 0;

    /* loop on time */
    for (i=0; i<n; i++) {
	/* test for skipping updating */
        if (i == last) {
	    loop = mnpq;
	    jfrom = loop;
	    /* test for switching */
	    if (q == 0) {
		/* pure AR */
		do_quick = 1;
		break;
	    }
	}
        if (i > mxpq && fabs(h2 - 1.0) < toler) {
	    do_quick = 1;
	    break;
	}
	/* update scalars */
        detman *= h2;
	while (fabs(detman) >= 1.0) {
	    detman *= DSHRINK;
	    detcar += DCDELTA;
	}
	while (fabs(detman) < DSHRINK) {
	    detman *= DEXPAND;
	    detcar -= DCDELTA;
	}
	vw0 = vw[0];
	wi = w[i];
	a = wi - vw0;
	e[i] = a / sqrt(h2);
	aor = a / h2;
	*sumsq += a * aor;
        vl0 = vl[0];
        alfa = vl0 / h2;
        h2 -= alfa * vl0;
	if (h2 <= eps1) {
	    return 8; /* fault code */
	}
 	/* update vectors */
        for (j=0; j<loop; j++) {
	    flj = vl[j+1] + phi[j] * vl0;
	    vw[j] = vw[j+1] + phi[j] * vw0 + aor * vk[j];
	    vl[j] = flj - alfa * vk[j];
	    vk[j] -= alfa * flj;
	}
	for (j=jfrom; j<q; j++) {
	    vw[j] = vw[j+1] + aor * vk[j];
	    vl[j] = vl[j+1] - alfa * vk[j];
	    vk[j] -= alfa * vl[j+1];
	}
	for (j=jfrom; j<p; j++) {
	    vw[j] = vw[j+1] + phi[j] * wi;
	}
    }

    if (do_quick) {
	/* quick recursions */
	nexti = i;
	ret = -nexti;
	for (i=nexti; i<n; i++) {
	    e[i] = w[i];
	    for (j=0; j<p; j++) {
		e[i] -= phi[j] * w[i-j-1];
	    }
	    for (j=0; j<q; j++) {
		e[i] -= theta[j] * e[i-j-1];
	    }
	    *sumsq += e[i] * e[i];
	}
    }

    *fact = pow(detman, 1.0 / n) * pow(2.0, detcar / n);

    return ret;
}

/*
  Algorithm AS 197.1 Applied Statistics (1984) VOL. 33, NO. 1

  Implementation of the algorithm of G. Tunnicliffe-Wilson
  (J. Statist. Comput. Simul. 8, 1979, 301-309) for computation of the
  autocovariance function of an ARMA process of order (p, q) and unit
  innovation variance. The autoregressive and moving average
  coefficients are stored in vectors phi and theta, using Box and
  Jenkins notation. On output, vector cvli contains the covariances
  between the variable and the (K-1)-lagged innovation for K = 1, ...,
  q + 1.

  Dimensions: phi(p), theta(q), acf(ma), cvli(mxpqp1), alpha(mxpq)
*/

static int tw_acf (const double *phi, int p,
                   const double *theta, int q,
		   double *acf, double *cvli, int ma,
		   double *alpha, int mxpq)
{
    double ak, div, eps2 = 1.0e-10;
    int i, j, k, kc, j1;
    int kp1, mikp, miim1p;

    /* Initialization, and return if p = q = 0 */
    acf[0] = cvli[0] = 1.0;
    if (ma == 1) {
	return 0;
    }
    for (i=1; i<ma; i++) {
	acf[i] = cvli[i] = 0;
    }
    for (k=0; k<mxpq; k++) {
	alpha[k] = 0;
    }

    /* computation of the ACF of the moving average part,
       stored in @acf
    */
    for (k=0; k<q; k++) {
        cvli[k+1] = acf[k+1] = theta[k];
        kc = q - k - 1;
        for (j=0; j<kc; j++) {
	    acf[k+1] += theta[j] * theta[j+k+1];
	}
	acf[0] += theta[k] * theta[k];
    }

    if (p == 0) {
	/* no AR part */
	return 0;
    }

    /* initialization of cvli */
    for (k=0; k<p; k++) {
        alpha[k] = cvli[k] = phi[k];
    }

    /* Tunnicliffe-Wilson's alpha and delta (delta stored in ACF
       which is gradually overwritten)
    */
    for (k=0; k<mxpq; k++) {
        kc = mxpq - k - 1;
        if (kc < p) {
	    ak = alpha[kc];
	    div = 1.0 - ak * ak;
	    if (div < eps2) {
		return 5;
	    }
	    if (kc == 0) {
		break;
	    }
	    for (j=0; j<kc; j++) {
		alpha[j] = (cvli[j] + ak * cvli[kc-j-1]) / div;
	    }
	    for (j=0; j<kc; j++) {
		cvli[j] = alpha[j];
	    }
	}
	if (kc < q) {
	    j1 = max0(kc - p, 1);
	    for (j=j1; j<=kc; j++) {
		acf[j] += acf[kc+1] * alpha[kc-j];
	    }
	}
    }

    /* computation of Tunnicliffe-Wilson's nu (stored in cvli,
       copied into acf)
    */
    acf[0] *= 0.5;
    for (k=0; k<p; k++) {
	ak = alpha[k];
	kp1 = k + 1;
	div = 1.0 - ak * ak;
	for (j=0; j<=kp1; j++) {
	    cvli[j] = (acf[j] + ak * acf[k+1-j]) / div;
	}
	for (j=0; j<=kp1; j++) {
	    acf[j] = cvli[j];
	}
    }

    /* Computation of acf (which is gradually overwritten) */
    for (i=0; i<ma; i++) {
        miim1p = min0(i, p);
        for (j=0; j<miim1p; j++) {
	    acf[i] += phi[j] * acf[i-j-1];
	}
    }
    acf[0] *= 2.0;

    /* computation of cvli */
    cvli[0] = 1.0;
    for (k=0; k<q; k++) {
	cvli[k+1] = theta[k];
	mikp = min0(k+1, p);
	for (j=0; j<mikp; j++) {
	    cvli[k+1] += phi[j] * cvli[k-j];
	}
    }

    return 0;
}