1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
|
/*
* gretl -- Gnu Regression, Econometrics and Time-series Library
* Copyright (C) 2001 Allin Cottrell and Riccardo "Jack" Lucchetti
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* GARCH plugin for gretl using the Fiorentini, Calzolari and
Panattoni mixed-gradient algorithm.
*/
#include "libgretl.h"
#include "version.h"
#include "libset.h"
#include "var.h"
#include "garch.h"
#define VPARM_DEBUG 0
#define PQ_MAX 7 /* max sum of GARCH p and q */
#define GARCH_PARAM_MAX 0.999
static void add_garch_varnames (MODEL *pmod, const DATASET *dset,
const int *list)
{
char tmp[24];
int p = list[1]; /* GARCH beta terms */
int q = list[2]; /* ARCH alpha terms > 0 */
int r = list[0] - 4; /* regressors */
int np = 1 + p + q + r; /* the "1" is for alpha(0) */
int i, j;
free(pmod->list);
pmod->list = gretl_list_copy(list);
gretl_model_allocate_param_names(pmod, np);
if (pmod->errcode) {
return;
}
j = 0;
for (i=0; i<r; i++) {
gretl_model_set_param_name(pmod, j++, dset->varname[pmod->list[5+i]]);
}
gretl_model_set_param_name(pmod, j++, "alpha(0)");
for (i=0; i<q; i++) {
sprintf(tmp, "alpha(%d)", i + 1);
gretl_model_set_param_name(pmod, j++, tmp);
}
for (i=0; i<p; i++) {
sprintf(tmp, "beta(%d)", i + 1);
gretl_model_set_param_name(pmod, j++, tmp);
}
}
static void rescale_results (double *theta, gretl_matrix *V,
double scale, int npar, int nc)
{
double vij, sfi, sf, sc2 = scale * scale;
int i, j;
for (i=0; i<nc; i++) {
theta[i] *= scale;
}
theta[nc] *= sc2;
for (i=0; i<npar; i++) {
sfi = (i < nc)? scale : (i == nc)? sc2 : 1.0;
for (j=0; j<=i; j++) {
sf = (j < nc)? scale * sfi : (j == nc)? sc2 * sfi : sfi;
vij = gretl_matrix_get(V, i, j) * sf;
gretl_matrix_set(V, i, j, vij);
gretl_matrix_set(V, j, i, vij);
}
}
}
static int
write_garch_stats (MODEL *pmod, const int *list, const DATASET *dset,
double *theta, gretl_matrix *V, int p, int q,
double scale, const double *e, const double *h,
int npar, int nc, int pad, int ifc, PRN *prn)
{
double *garch_h;
double den;
const double *vcoef;
int ynum = list[4];
int nvp = list[1] + list[2];
int xvars = list[0] - 4;
int i, err;
err = gretl_model_set_int(pmod, "garch_p", p);
if (!err) {
err = gretl_model_set_int(pmod, "garch_q", q);
}
if (!err) {
if (scale != 1.0) {
rescale_results(theta, V, scale, npar, nc);
}
err = gretl_model_write_coeffs(pmod, theta, npar);
}
if (err) {
return err;
}
gretl_model_write_vcv(pmod, V);
/* verbose? */
if (prn != NULL) {
for (i=0; i<npar; i++) {
pprintf(prn, "theta[%d]: %#14.6g (%#.6g)\n", i, theta[i],
pmod->sderr[i]);
}
pputc(prn, '\n');
}
pmod->ess = 0.0;
for (i=pmod->t1; i<=pmod->t2; i++) {
pmod->uhat[i] = e[i + pad] * scale;
pmod->ess += pmod->uhat[i] * pmod->uhat[i];
pmod->yhat[i] = dset->Z[ynum][i] * scale - pmod->uhat[i];
}
vcoef = pmod->coeff + xvars;
/* set sigma to its unconditional or steady-state value */
den = 1.0;
for (i=1; i<=nvp; i++) {
den -= vcoef[i];
}
pmod->sigma = sqrt(vcoef[0] / den);
pmod->adjrsq = NADBL;
pmod->fstt = NADBL;
mle_criteria(pmod, 1);
pmod->ci = GARCH;
pmod->ifc = ifc;
add_garch_varnames(pmod, dset, list);
/* add predicted error variance to model */
garch_h = malloc(dset->n * sizeof *garch_h);
if (garch_h != NULL) {
for (i=0; i<dset->n; i++) {
if (i < pmod->t1 || i > pmod->t2) {
garch_h[i] = NADBL;
} else {
garch_h[i] = h[i + pad] * scale * scale;
}
}
gretl_model_set_data(pmod, "garch_h", garch_h,
GRETL_TYPE_DOUBLE_ARRAY,
dset->n * sizeof *garch_h);
}
return err;
}
static int make_garch_dataset (const int *list, const DATASET *dset,
int bign, int pad, int nx,
double **py, double ***pX)
{
double *y = NULL, **X = NULL;
int vx, vy = list[4];
int i, k, s, t;
/* If pad > 0 we have to create a newly allocated, padded
dataset. Otherwise we can use a virtual dataset, made
up of pointers into the original dataset, Z.
*/
if (pad > 0) {
y = malloc(bign * sizeof *y);
if (y == NULL) {
return E_ALLOC;
}
*py = y;
}
if (nx > 0) {
if (pad) {
X = doubles_array_new(nx, bign);
} else {
X = malloc(nx * sizeof *X);
}
if (X == NULL) {
free(y);
*py = NULL;
return E_ALLOC;
}
}
if (pad > 0) {
/* build padded dataset */
for (t=0; t<bign; t++) {
if (t < pad) {
y[t] = 0.0;
for (i=0; i<nx; i++) {
X[i][t] = 0.0;
}
} else {
s = t - pad;
y[t] = dset->Z[vy][s];
k = 5;
for (i=0; i<nx; i++) {
vx = list[k++];
X[i][t] = dset->Z[vx][s];
}
}
}
} else {
/* build virtual dataset */
*py = dset->Z[vy];
k = 5;
for (i=0; i<nx; i++) {
vx = list[k++];
X[i] = dset->Z[vx];
}
}
*pX = X;
return 0;
}
static int get_vopt (int robust)
{
int vopt = libset_get_int(GARCH_VCV);
int ropt = libset_get_int(GARCH_ALT_VCV);
/* The defaults: QML if "robust" option is in force,
otherwise negative Hessian */
if (vopt == ML_UNSET) {
if (robust) {
if (ropt == ML_UNSET) {
vopt = ML_QML;
} else {
vopt = ropt;
}
} else {
vopt = ML_HESSIAN;
}
}
return vopt;
}
static void garch_print_init (const double *theta, int k,
int p, int q, int manual,
PRN *prn)
{
int i, j = 0;
pputc(prn, '\n');
if (manual) {
pputs(prn, _("Manual initialization of parameters"));
} else {
pputs(prn, _("Automatic initialization of parameters"));
}
pprintf(prn, "\n\n %s:\n", _("Regression coefficients"));
for (i=0; i<k; i++) {
pprintf(prn, " theta[%d] = %g\n", i, theta[j++]);
}
pprintf(prn, "\n %s:\n", _("Variance parameters"));
pprintf(prn, " alpha[0] = %g\n", theta[j++]);
for (i=0; i<q; i++) {
pprintf(prn, " alpha[%d] = %g\n", i+1, theta[j++]);
}
for (i=0; i<p; i++) {
pprintf(prn, " beta[%d] = %g\n", i, theta[j++]);
}
pputc(prn, '\n');
}
/* pick up any manually set initial values (if these
have been set via "set initvals")
*/
static int garch_manual_init (double *theta, int k, int p, int q,
gretlopt opt, PRN *prn)
{
int mlen = n_initvals();
int n = k + p + q + 1;
if (mlen != n) {
if (mlen > 0) {
fprintf(stderr, "Number of initvals = %d, but we want %d "
"values for GARCH\n", mlen, n);
}
/* initialization not done */
return 0;
}
/* if we're _not_ using FCP, the following is handled
within the BFGS routine */
if (opt & OPT_F) {
gretl_matrix *m = get_initvals();
int i;
/* order: coeffs on regressors; variance params */
for (i=0; i<n; i++) {
theta[i] = m->val[i];
}
garch_print_init(theta, k, p, q, 1, prn);
gretl_matrix_free(m);
}
return 1;
}
static int garch_peek_manual_init (int k, int p, int q)
{
return k + p + q + 1 == n_initvals();
}
static int
garch_driver (const int *list, double scale,
const DATASET *dset, MODEL *pmod,
double *vparm, int ifc, gretlopt opt,
PRN *prn)
{
int t1 = pmod->t1, t2 = pmod->t2;
int nc = pmod->ncoeff;
int p = list[1];
int q = list[2];
double *y = NULL;
double **X = NULL;
double *h = NULL;
double *e = NULL, *e2 = NULL;
double *theta = NULL;
double ll = NADBL;
gretl_matrix *V = NULL;
int fnc = 0, grc = 0, iters = 0;
int nobs, maxlag, bign, pad = 0;
int i, npar, vopt;
int err = 0;
vopt = get_vopt(opt & OPT_R);
maxlag = (p > q)? p : q;
npar = nc + p + q + 1;
nobs = t2 + 1; /* number of obs in full dataset */
if (maxlag > t1) {
/* need to pad data series at start */
pad = maxlag - t1;
}
/* length of series to pass to garch_estimate */
bign = nobs + pad;
e = malloc(bign * sizeof *e);
e2 = malloc(bign * sizeof *e2);
h = malloc(bign * sizeof *h);
if (e == NULL || e2 == NULL || h == NULL) {
err = E_ALLOC;
goto bailout;
}
for (i=0; i<bign; i++) {
e[i] = e2[i] = h[i] = 0.0;
}
theta = malloc(npar * sizeof *theta);
if (theta == NULL) {
err = E_ALLOC;
goto bailout;
}
V = gretl_zero_matrix_new(npar, npar);
if (V == NULL) {
err = E_ALLOC;
goto bailout;
}
/* create dataset for garch estimation */
err = make_garch_dataset(list, dset, bign, pad, nc, &y, &X);
if (err) {
goto bailout;
}
if (!garch_manual_init(theta, nc, p, q, opt, prn)) {
/* initial coefficients from OLS */
for (i=0; i<nc; i++) {
theta[i] = pmod->coeff[i];
}
/* initialize variance parameters */
for (i=0; i<p+q+1; i++) {
theta[i+nc] = vparm[i];
}
if (opt & OPT_V) {
garch_print_init(theta, nc, p, q, 0, prn);
}
}
if (opt & OPT_F) {
/* --fcp */
err = garch_estimate(y, (const double **) X,
t1 + pad, t2 + pad, bign, nc,
p, q, theta, V, e, e2, h,
scale, &ll, &iters, vopt, prn);
} else {
err = garch_estimate_mod(y, (const double **) X,
t1 + pad, t2 + pad, bign, nc,
p, q, theta, V, e, e2, h,
scale, &ll, &fnc, &grc, vopt, prn);
}
if (!err) {
pmod->lnL = ll;
write_garch_stats(pmod, list, dset, theta, V, p, q,
scale, e, h, npar, nc, pad, ifc, prn);
if (iters > 0) {
gretl_model_set_int(pmod, "iters", iters);
} else if (grc > 0) {
gretl_model_set_int(pmod, "fncount", fnc);
gretl_model_set_int(pmod, "grcount", grc);
} else {
gretl_model_set_int(pmod, "iters", fnc);
}
gretl_model_set_vcv_info(pmod, VCV_ML, vopt);
if (opt & OPT_F) {
pmod->opt |= OPT_F;
}
}
bailout:
free(e);
free(e2);
free(h);
free(theta);
gretl_matrix_free(V);
if (pad > 0) {
free(y);
doubles_array_free(X, nc);
} else {
free(X);
}
if (err && !pmod->errcode) {
pmod->errcode = err;
}
return err;
}
static int add_uhat_squared (const MODEL *pmod, double scale,
DATASET *dset)
{
int t, v = dset->v;
if (dataset_add_series(dset, 1)) {
return E_ALLOC;
}
for (t=0; t<dset->n; t++) {
double u = pmod->uhat[t];
if (na(u)) {
dset->Z[v][t] = NADBL;
} else {
u /= scale;
dset->Z[v][t] = u * u;
}
}
strcpy(dset->varname[v], "uhat2");
return 0;
}
/*
p and q are the GARCH orders
ao = max(q,p) is the ar order
mo = q is the ma order
it is assumed that armapar contains the arma parameters
in the following order:
armapar[0] : intercept
armapar[1..ao] : ar terms
armapar[ao+1..ao+mo] : ma terms
*/
static void
garchpar_from_armapar (const double *armapar, int q, int p,
double *vparm)
{
double x, sum_ab = 0.0;
int ao = (p > q)? p : q;
int mo = q;
int i;
#if VPARM_DEBUG
for (i=0; i<1+ao+mo; i++) {
fprintf(stderr, "armapar[%d] = %#12.6g\n", i, armapar[i]);
}
#endif
for (i=1; i<=p; i++) {
x = 0.0;
if (i <= ao) {
x += armapar[i];
}
if (i<=mo) {
x += armapar[p+i];
}
vparm[i] = (x < 0.0)? 0.01 : x;
sum_ab += vparm[i];
}
for (i=1; i<=q; i++) {
x = armapar[p+i];
vparm[p+i] = (x > 0.0)? 0.0001 : -x;
sum_ab += vparm[p+i];
}
#if VPARM_DEBUG
fprintf(stderr, "sum_ab = %#12.6g\n", sum_ab);
#endif
if (sum_ab > GARCH_PARAM_MAX) {
for (i=1; i<=p+q; i++) {
vparm[i] *= GARCH_PARAM_MAX / sum_ab;
}
sum_ab = GARCH_PARAM_MAX;
}
vparm[0] = armapar[0];
}
static int
garch_init_by_arma (const MODEL *pmod, const int *glist,
DATASET *dset, double scale,
double *vparm)
{
int p = glist[1], q = glist[2];
int v = dset->v;
int *list = NULL;
int err = 0;
/* for now we'll try this only for GARCH up to (2,2) */
if (q > 2 || p > 2) {
return 0;
}
/* add OLS uhat squared to dataset */
if (add_uhat_squared(pmod, scale, dset)) {
return E_ALLOC;
}
list = gretl_list_copy(glist);
if (list == NULL) {
err = E_ALLOC;
} else {
MODEL amod;
int i;
list[1] = (q > p)? q : p;
list[2] = q;
/* dep var is squared OLS residual: last var added */
list[4] = v;
amod = arma(list, NULL, dset, OPT_C, NULL);
err = amod.errcode;
if (!err) {
model_count_minus(&amod);
garchpar_from_armapar(amod.coeff, p, q, vparm);
for (i=0; i<q+p+1; i++) {
fprintf(stderr, "from ARMA: vparm_init[%d] = %#12.6g\n", i,
vparm[i]);
}
}
clear_model(&amod);
}
dataset_drop_last_variables(dset, dset->v - v);
free(list);
return err;
}
/* XPOS is the list position of the first regressor (if any).
Note that the garch list structure is:
0 1 2 3 4 5 6 ...
# p q <sep> y x0 x1 ...
*/
#define XPOS 5
static int *get_garch_list (const int *list, const DATASET *dset,
gretlopt opt, int *ifc, int *err)
{
int *glist = NULL;
int i, p, q;
int cpos = 0;
int add0 = 0;
/* is the list well-formed? */
if (list[0] < 4 || list[1] == LISTSEP ||
list[2] == LISTSEP || list[3] != LISTSEP) {
*err = E_PARSE;
return NULL;
}
p = list[1];
q = list[2];
*err = 0;
/* negative orders don't make sense */
if (p < 0 || q < 0) {
gretl_errmsg_set(_("GARCH: neither p nor q can be negative"));
*err = E_DATA;
return NULL;
}
/* rule out pure AR in variance: the model is unidentified */
if (p > 0 && q == 0) {
gretl_errmsg_set(_("GARCH: p > 0 and q = 0: the model is unidentified"));
*err = E_DATA;
return NULL;
}
/* rule out excessive total GARCH-iness */
if (p + q > PQ_MAX) {
gretl_errmsg_sprintf(_("GARCH: p + q must not exceed %d"), PQ_MAX);
*err = E_DATA;
return NULL;
}
/* check for presence of constant among regressors */
for (i=XPOS; i<=list[0]; i++) {
if (list[i] == 0) {
/* got the constant: OK */
cpos = i;
break;
}
}
/* OPT_N means don't auto-add a constant */
if (cpos == 0 && !(opt & OPT_N)) {
add0 = 1;
}
*ifc = (cpos > 0 || add0);
glist = gretl_list_new(list[0] + add0);
if (glist == NULL) {
*err = E_ALLOC;
} else {
int j = 1;
/* transcribe first portion of original list */
for (i=1; i<XPOS; i++) {
glist[j++] = list[i];
}
if (add0 || (cpos > 0 && cpos != XPOS)) {
/* insert constant here if not already present,
or if originally placed later */
glist[j++] = 0;
}
/* transcribe the original regressors, if any */
for (i=XPOS; i<=list[0]; i++) {
if (i == XPOS || list[i] != 0) {
glist[j++] = list[i];
}
}
}
return glist;
}
#define GARCH_AUTOCORR_TEST 1
#if GARCH_AUTOCORR_TEST
int garch_pretest (MODEL *pmod, DATASET *dset,
double *LMF, double *pvF)
{
int err;
err = autocorr_test(pmod, dset->pd, dset,
OPT_S | OPT_Q, NULL);
if (!err) {
*LMF = get_last_test_statistic();
*pvF = get_last_pvalue();
}
return err;
}
static void autocorr_message (double LMF, double pvF, int order, PRN *prn)
{
if (!na(LMF) && pvF < 0.05) {
pputs(prn, _("\nConvergence was not reached. One possible reason "
"for this is\nautocorrelation in the error term.\n"));
pprintf(prn, _("After estimating the model by OLS, the following result "
"was\nobtained for a test of autocorrelation of order %d:\n"),
order);
pprintf(prn, "LMF = %g, with p-value %g\n", LMF, pvF);
}
}
#endif /* GARCH_AUTOCORR_TEST */
#define GARCH_SCALE_SIGMA 1
#if GARCH_SCALE_SIGMA
static double garch_scale_sigma (int yno, MODEL *pmod, DATASET *dset)
{
double scale = pmod->sigma;
int i;
for (i=0; i<dset->n; i++) {
if (!na(dset->Z[yno][i])) {
dset->Z[yno][i] /= scale;
}
}
for (i=0; i<pmod->ncoeff; i++) {
pmod->coeff[i] /= scale;
}
pmod->ess /= scale * scale;
pmod->sigma = 1.0;
return scale;
}
static void garch_undo_scaling (int yno, double scale, DATASET *dset)
{
int t;
if (scale != 1.0) {
for (t=0; t<dset->n; t++) {
if (!na(dset->Z[yno][t])) {
dset->Z[yno][t] *= scale;
}
}
}
}
#endif
/* default variance parameter initialization */
static void garch_vparm_init (const int *list, double sigma,
double *vparm)
{
int i, q = list[1], p = list[2];
double den = 1.0;
double tmp = (q>0) ? 0.2 : 0.8;
if (p > 0) {
for (i=1; i<=p; i++) {
vparm[i] = tmp / p;
den -= vparm[i];
}
}
if (q > 0) {
for (i=p+1; i<=p+q; i++) {
vparm[i] = 0.7 / q;
den -= vparm[i];
}
}
vparm[0] = sigma * sigma * den;
}
/* make regression list for initial OLS: we skip three terms
from the GARCH list, namely p, q and the separator
that follows.
*/
static int *make_ols_list (const int *list, int *err)
{
int *olist;
int i;
olist = gretl_list_new(list[0] - 3);
if (olist == NULL) {
*err = E_ALLOC;
} else {
for (i=4; i<=list[0]; i++) {
olist[i-3] = list[i];
}
}
return olist;
}
static MODEL garch_run_ols (const int *list, DATASET *dset,
PRN *prn)
{
int *ols_list;
MODEL model;
int err = 0;
ols_list = make_ols_list(list, &err);
if (err) {
gretl_model_init(&model, NULL);
model.errcode = err;
return model;
}
model = lsq(ols_list, dset, OLS, OPT_A | OPT_M | OPT_U);
#if 0
fprintf(stderr, "errcode=%d, ess=%g, sigma=%g\n",
model.errcode, model.ess, model.sigma);
if (!model.errcode) {
printmodel(&model, dset, OPT_NONE, prn);
}
#endif
free(ols_list);
if (!model.errcode) {
clear_model_xpx(&model);
}
return model;
}
static void clean_dropped_vars (MODEL mod, int *list)
{
if (list[0] - mod.list[0] > 3) {
int i;
list[0] = mod.list[0] + 3;
for (i=4; i<=list[0]; i++) {
list[i] = mod.list[i-3];
}
}
}
static void garch_add_lr_test (MODEL *pmod, double llr,
const int *list)
{
if (!na(pmod->lnL) && llr <= pmod->lnL) {
double LR = 2.0 * (pmod->lnL - llr);
int LRdf = list[1] + list[2];
gretl_model_set_double(pmod, "garch_LR", LR);
gretl_model_set_int(pmod, "garch_LR_df", LRdf);
}
}
static void garch_standardize_residuals (MODEL *pmod)
{
double *h = gretl_model_get_data(pmod, "garch_h");
if (h != NULL) {
int t;
for (t=pmod->t1; t<=pmod->t2; t++) {
pmod->uhat[t] /= sqrt(h[t]);
}
pmod->opt |= OPT_Z;
}
}
/* the driver function for the plugin */
MODEL garch_model (const int *cmdlist, DATASET *dset,
PRN *prn, gretlopt opt)
{
MODEL model;
int *list = NULL;
double vparm[PQ_MAX+1] = {0};
double LMF = NADBL;
double pvF = NADBL;
double llr = NADBL;
double scale = 1.0;
int ols_T, ifc, yno = 0;
int have_init = 0;
int err = 0;
list = get_garch_list(cmdlist, dset, opt, &ifc, &err);
if (err) {
gretl_model_init(&model, NULL);
model.errcode = err;
return model;
}
/* run initial OLS */
model = garch_run_ols(list, dset, prn);
if (model.errcode) {
free(list);
return model;
}
clean_dropped_vars(model, list);
llr = model.lnL;
ols_T = model.nobs;
have_init = garch_peek_manual_init(model.ncoeff, list[1], list[2]);
#if GARCH_AUTOCORR_TEST
/* pretest the residuals for autocorrelation */
if (prn != NULL) {
garch_pretest(&model, dset, &LMF, &pvF);
}
#endif
#if GARCH_SCALE_SIGMA
if (!have_init) {
yno = list[4];
scale = garch_scale_sigma(yno, &model, dset);
}
#endif
if (!have_init) {
/* variance parameter initialization */
garch_vparm_init(list, model.sigma, vparm);
if (opt & OPT_A) {
/* "--arma-init": try initializing params via ARMA */
garch_init_by_arma(&model, list, dset, scale, vparm);
}
}
garch_driver(list, scale, dset, &model, vparm,
ifc, opt, prn);
#if GARCH_SCALE_SIGMA
garch_undo_scaling(yno, scale, dset);
#endif
#if GARCH_AUTOCORR_TEST
if (!na(LMF)) {
if (model.errcode == E_NOCONV) {
autocorr_message(LMF, pvF, dset->pd, prn);
} else {
gretl_model_destroy_tests(&model);
}
}
#endif
if (!model.errcode) {
if (opt & OPT_Z) {
garch_standardize_residuals(&model);
}
if (!na(llr) && ols_T == model.nobs) {
garch_add_lr_test(&model, llr, cmdlist);
}
}
free(list);
return model;
}
|