File: liml.c

package info (click to toggle)
gretl 2025b-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 64,984 kB
  • sloc: ansic: 426,435; sh: 4,916; makefile: 3,257; cpp: 2,777; xml: 610; perl: 364
file content (412 lines) | stat: -rw-r--r-- 10,478 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/*
 *  gretl -- Gnu Regression, Econometrics and Time-series Library
 *  Copyright (C) 2001 Allin Cottrell and Riccardo "Jack" Lucchetti
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#include "libgretl.h"
#include "gretl_matrix.h"
#include "matrix_extra.h"
#include "system.h"
#include "sysml.h"

#define LDEBUG 0

/* Note: it sort-of seems that to produce proper restricted LIML
   estimates one would somehow have to impose appropriate restrictions
   at the stage of the computations below, i.e. where the matrices of
   residuals E0 and E1 are generated.  These are residuals from the
   regression of the dependent and endogenous RHS variables on the
   exogenous vars (first just the included exogenous vars, then all of
   the instruments).  But since we're calculating E0 and E1
   equation-by-equation, we can't impose any cross-equation
   restrictions (and it's not clear to me what they would look like,
   anyway).  This means that the E0 and E1 estimates will be
   invariant, for a given equation, regardless of whether or not we're
   imposing restrictions at the level of the subsequent solution for
   the k-class estimator.  So the minimum eigenvalue and
   log-likelihood, for each equation, will also be invariant with
   respect to any restrictions.  This seems inconsistent.

   But maybe I'm wrong.  Clearly, the invariance mentioned above would
   produce nonsense if we were trying to conduct an LR test of the
   restrictions, but in fact we do an F-test, based on the covariance
   matrix of the unrestricted LIML estimates.  So perhaps it's OK...
*/

/* compose E0 or E1 as in Greene, 4e, p. 686, looping across the
   endogenous vars in the model list
*/

static int resids_to_E (gretl_matrix *E, MODEL *lmod, int *reglist,
			const int *exlist, const int *list,
			DATASET *dset)
{
    int i, t, j = 0;
    int T = E->rows;
    int t1 = dset->t1;
    int err = 0;

    for (i=1; i<=list[0] && !err; i++) {
	if (in_gretl_list(exlist, list[i])) {
	    continue;
	}
        /* set the dependent variable */
	reglist[1] = list[i];

	if (reglist[0] == 1) {
	    /* null model! */
	    int v = reglist[1];

            for (t=0; t<T; t++) {
                gretl_matrix_set(E, t, j, dset->Z[v][t + t1]);
            }
            j++;
	    continue;
	}

	/* regress on the specified set of instruments */
	*lmod = lsq(reglist, dset, OLS, OPT_A);
        err = lmod->errcode;
	if (!err) {
            /* put residuals into appropriate column of E and
               increment the column */
            for (t=0; t<T; t++) {
                gretl_matrix_set(E, t, j, lmod->uhat[t + t1]);
            }
            j++;
        }
	clear_model(lmod);
    }

    return err;
}

/* construct the regression list for the auxiliary regressions
   needed as a basis for LIML */

static int *
liml_make_reglist (const equation_system *sys,
		   DATASET *dset, const int *list,
		   const int *exlist, int *k,
		   int *err)
{
    int nexo = exlist[0];
    int *reglist;
    int i, j, vi;

    reglist = gretl_list_new(nexo + 1);
    if (reglist == NULL) {
	*err = E_ALLOC;
	return NULL;
    }

#if LDEBUG
    fprintf(stderr, "liml_make_reglist: found %d exog vars\n", nexo);
    printlist(exlist, "exog list");
#endif

    /* at first, put all _included_ exog vars in reglist */
    *k = 1;
    reglist[0] = 1;
    reglist[1] = 0;
    j = 2;
    for (i=2; i<=list[0]; i++) {
	vi = list[i];
	if (in_gretl_list(exlist, vi)) {
	    reglist[0] += 1;
	    reglist[j++] = vi;
	} else {
	    /* an endogenous var */
	    *k += 1;
	}
    }

#if LDEBUG
    printlist(reglist, "liml_make_reglist, reglist");
#endif

    return reglist;
}

/* set the special LIML k-class data on the model: these data will be
   retrieved when calculating the LIML coefficients and their
   covariance matrix (in sysest.c)
*/

static int
liml_set_model_data (MODEL *pmod, const gretl_matrix *E,
		     const int *exlist, const int *list,
		     int T, double lmin, DATASET *dset)
{
    double *Xi = NULL;
    double *ymod = NULL;
    double yt, xit, eit;
    int pos, m;
    int i, vi, j, s, t;
    int err = 0;

    pos = gretl_list_separator_position(list);
    m = (pos > 0)? (pos - 2) : list[0] - 1;

    ymod = malloc(dset->n * sizeof *ymod);
    if (ymod == NULL) {
	return 1;
    }

    for (t=0; t<dset->n; t++) {
	ymod[t] = NADBL;
    }

    for (t=0; t<T; t++) {
	s = t + dset->t1;
	yt = dset->Z[list[1]][s];
	eit = gretl_matrix_get(E, t, 0);
	ymod[t + dset->t1] = yt - lmin * eit;
	j = 1;
	for (i=0; i<m; i++) {
	    vi = list[i+2];
	    if (in_gretl_list(exlist, vi)) {
		continue;
	    }
	    Xi = model_get_Xi(pmod, dset, i);
	    if (Xi == NULL) {
		err = 1;
		break;
	    }
	    xit = dset->Z[vi][s];
	    eit = gretl_matrix_get(E, t, j++);
	    Xi[s] = xit - lmin * eit;
	}
	if (err) break;
    }

    if (!err) {
	err = gretl_model_set_data(pmod, "liml_y", ymod,
				   GRETL_TYPE_DOUBLE_ARRAY,
				   dset->n * sizeof *ymod);
    }

    if (err) {
	free(ymod);
    }

    return err;
}

static double liml_get_ldet (gretl_matrix *W1, int *err)
{
    double ret = NADBL;
    char *mask;

    /* allow for the possibility that W1 is rank-deficient? */
    mask = gretl_matrix_rank_mask(W1, err);
    if (mask != NULL) {
	fprintf(stderr, "note: LIML W1 is rank deficient\n");
        *err = gretl_matrix_cut_rows_cols(W1, mask);
    }
    if (!*err) {
        ret = gretl_matrix_log_determinant(W1, err);
    }

    return ret;
}

static int liml_eqn_get_lists (equation_system *sys, int eq,
                               int **plist, int **pexlist,
                               int *freelists)
{
    int *list = system_get_list(sys, eq);
    int err = 0;

    if (gretl_list_has_separator(list)) {
        /* got a TSLS-style list */
        err = gretl_list_split_on_separator(list, plist, pexlist);
        *freelists = 1;
    } else {
        *plist = list;
        *pexlist = system_get_instr_vars(sys);
    }

    return err;
}

static int liml_do_equation (equation_system *sys, int eq,
			     DATASET *dset, PRN *prn)
{
    int *list = NULL;
    int *exlist = NULL;
    int *reglist = NULL;
    gretl_matrix *E = NULL;
    gretl_matrix *W0 = NULL;
    gretl_matrix *W1 = NULL;
    double lmin = 1.0;
    MODEL *pmod;
    MODEL lmod;
    int freelists = 0;
    int idf, i, k;
    int T = sys->T;
    int err = 0;

    err = liml_eqn_get_lists(sys, eq, &list, &exlist, &freelists);
    if (err) {
        return err;
    }

#if LDEBUG
    fprintf(stderr, "\nWorking on equation for %s\n", dset->varname[list[1]]);
#endif

    /* get pointer to model (initialized via TSLS) */
    pmod = system_get_model(sys, eq);

    /* degrees of freedom for over-identification test: total
       exogenous vars minus the number of parameters in the equation
       (unless we're estimating subject to specified restrictions, in
       which case we skip the usual over-id test)
    */
    if (system_n_restrictions(sys) == 0) {
	idf = exlist[0] - pmod->ncoeff;
    } else {
	idf = -1;
	gretl_model_set_int(pmod, "restricted", 1);
    }

    /* first make regression list using only included instruments */
    reglist = liml_make_reglist(sys, dset, list, exlist, &k, &err);
    if (err) {
	if (freelists) {
	    free(list);
	    free(exlist);
	}
	return err;
    }

#if LDEBUG
    fprintf(stderr, "number of endogenous vars in equation: k = %d\n", k);
#endif

    E = gretl_matrix_alloc(T, k);
    W0 = gretl_matrix_alloc(k, k);
    W1 = gretl_matrix_alloc(k, k);

    if (E == NULL || W0 == NULL || W1 == NULL) {
	err = E_ALLOC;
	goto bailout;
    }

    err = resids_to_E(E, &lmod, reglist, exlist, list, dset);
    if (!err) {
	err = gretl_matrix_multiply_mod(E, GRETL_MOD_TRANSPOSE,
					E, GRETL_MOD_NONE,
					W0, GRETL_MOD_NONE);
    }
#if LDEBUG
    if (!err) gretl_matrix_print(W0, "W0");
#endif

    if (!err) {
	/* re-make the regression list using all instruments */
	reglist[0] = 1 + exlist[0];
	for (i=2; i<=reglist[0]; i++) {
	    reglist[i] = exlist[i-1];
	}
	err = resids_to_E(E, &lmod, reglist, exlist, list, dset);
    }
    if (!err) {
	err = gretl_matrix_multiply_mod(E, GRETL_MOD_TRANSPOSE,
					E, GRETL_MOD_NONE,
					W1, GRETL_MOD_NONE);
    }
#if LDEBUG
    if (!err) gretl_matrix_print(W1, "W1");
#endif

    if (!err) {
        /* determine the minimum eigenvalue of W1^{-1} * W0 */
        gretl_matrix *L = gretl_gensymm_eigenvals(W1, W0, NULL, &err);

        if (!err) {
            lmin = 1.0 / L->val[k-1];
        }
        gretl_matrix_free(L);
    }

    if (!err) {
	gretl_model_set_double(pmod, "lmin", lmin);
	gretl_model_set_int(pmod, "idf", idf);
#if LDEBUG
	fprintf(stderr, "lmin = %g, idf = %d\n", lmin, idf);
#endif
	err = liml_set_model_data(pmod, E, exlist, list, T,
				  lmin, dset);
	if (err) {
	    fprintf(stderr, "error in liml_set_model_data()\n");
	}
    }

    if (!err) {
	/* compute and set log-likelihood, etc. */
	double ldet = liml_get_ldet(W1, &err);

	if (na(ldet)) {
	    pmod->lnL = NADBL;
	} else {
	    /* Davidson and MacKinnon, ETM, p. 538 */
	    pmod->lnL = -(T/2.0) * (sys->neqns * LN_2_PI + log(lmin) + ldet);
	}
	mle_criteria(pmod, 0);
    }

 bailout:

    gretl_matrix_free(E);
    gretl_matrix_free(W0);
    gretl_matrix_free(W1);

    free(reglist);
    if (freelists) {
	free(list);
	free(exlist);
    }

    return err;
}

/* Driver function for LIML: calculate the minimum eigenvalue per
   equation, and set the suitably transformed data on the respective
   models
*/

int liml_driver (equation_system *sys, DATASET *dset, PRN *prn)
{
    int i, err = 0;

#if LDEBUG
    fprintf(stderr, "\n *** liml driver called: sys = %p\n", (void *) sys);
#endif

    for (i=0; i<sys->neqns && !err; i++) {
#if LDEBUG > 1
	if (prn != NULL) {
	    printmodel(system_get_model(sys, i), dset, OPT_NONE, prn);
	}
#endif
	err = liml_do_equation(sys, i, dset, prn);
    }

    return err;
}