1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
#include <string>
#include <math.h>
#include <stdio.h>
#include "gr.hh"
#include "extern.hh"
extern char _grTempString[];
bool regressCmd(void);
bool regress_linearCmd(void);
int fit(double x[], double y[], int ndata, double sig[], int mwt, double *a, double *b, double *siga, double *sigb, double *chi2, double *q);
double gammln(double xx);
double gammq(double a, double x);
void gcf(double *gammcf, double a, double x, double *gln);
void gser(double *gamser, double a, double x, double *gln);
double R_linear(double x[], double y[], int n);
double rms_deviation(double x[], double y[], int n, double a, double b);
static double student_t_025(int nu);
// regressCmd() - handle 'regress' command
bool
regressCmd()
{
if (!_columns_exist) {
err("first 'read columns'\n");
return false;
}
switch (_nword) {
case 4:
// regress y vs x
regress_linearCmd();
break;
case 5:
// regress y vs x linear
if (!strcmp(_word[4], "linear"))
regress_linearCmd();
else {
err("only linear regression permitted now");
return false;
}
break;
default:
err("proper: regress y vs x [linear]");
return false;
}
return true;
}
bool
regress_linearCmd()
{
double a, b, siga, sigb, chi2, q;
double r2;
unsigned int i;
if (_colX.size() < 2 || _colY.size() < 2) {
err("need more than 2 data points\n");
return false;
}
if (strcmp(_word[2], "vs")) {
err("keyword 'vs' required. proper: regress y vs x");
return false;
}
if (!strcmp(_word[1], "y") && !strcmp(_word[3], "x")) {
vector<double> errx(_colX.size(), 0.0);
// regress y vs x
for (i = 0; i < _colX.size(); i++)
if (!gr_missing(_colX[i])
&& !gr_missing(_colY[i]))
errx[i] = 1.0;
else
errx[i] = 1.0e10;
int good = fit(_colX.begin(),
_colY.begin(),
_colX.size(),
errx.begin(),
1, &a, &b, &siga, &sigb, &chi2, &q);
r2 = R_linear(_colX.begin(), _colY.begin(), _colX.size());
r2 = r2 * r2;
double deviation = rms_deviation
(_colX.begin(),
_colY.begin(),
_colX.size(),
a,
b);
if (good > 2) {
sprintf(_grTempString, "\
y = [%g +/- %g] + [%g +/- %g]x (95%% CI); chi2=%g; q=%5g; R^2=%g; rms deviation=%g (%d good data)\n",
a, student_t_025(good-2)*siga,
b, student_t_025(good-2)*sigb,
chi2, q, r2, deviation, good);
} else {
sprintf(_grTempString, "\
y = %g + %g x; chi2=%g; R^2=%g (%d good data)\n",
a, b, chi2, r2, good);
}
PUT_VAR("..coeff0..", a);
PUT_VAR("..coeff1..", b);
PUT_VAR("..coeff0_sig..", student_t_025(good-2)*siga);
PUT_VAR("..coeff1_sig..", student_t_025(good-2)*sigb);
PUT_VAR("..R2..", r2);
PUT_VAR("..regression_deviation..", deviation);
gr_textput(_grTempString);
return true;
} else if (!strcmp(_word[1], "x") && !strcmp(_word[3], "y")) {
vector<double> errx(_colX.size(), 0.0);
// regress x vs y
for (i = 0; i < _colX.size(); i++)
if (!gr_missing(_colX[i])
&& !gr_missing(_colY[i]))
errx[i] = 1.0;
else
errx[i] = 1.0e10;
int good;
good = fit(_colY.begin(),
_colX.begin(),
_colX.size(),
errx.begin(),
1, &a, &b, &siga, &sigb, &chi2, &q);
r2 = R_linear(_colY.begin(), _colX.begin(), _colX.size());
r2 = r2 * r2;
double deviation = rms_deviation
(_colY.begin(),
_colX.begin(),
_colY.size(),
a,
b);
if (good > 2) {
sprintf(_grTempString, "\
x = [%g +/- %g] + [%g +/- %g]y (95%% CI); chi2=%g; q=%5g; R^2=%g; rms deviation=%g (%d good data)\n",
a, student_t_025(good-2)*siga,
b, student_t_025(good-2)*sigb,
chi2, q, r2, deviation, good);
} else {
sprintf(_grTempString, "\
x = %g + %g y; chi2=%g; R^2=%g (%d good data)\n",
a, b, chi2, r2, good);
}
PUT_VAR("..coeff0..", a);
PUT_VAR("..coeff1..", b);
PUT_VAR("..coeff0_sig..", student_t_025(good-2)*siga);
PUT_VAR("..coeff1_sig..", student_t_025(good-2)*sigb);
PUT_VAR("..R2..", r2);
PUT_VAR("..regression_deviation..", deviation);
gr_textput(_grTempString);
return true;
} else {
err("proper: regress y vs x [linear] or regress x vs y [linear]");
return false;
}
}
// Compute Pearson correlation coefficient, R.
double
R_linear(double x[], double y[], int n)
{
// Use formulae in terms of demeaned variables,
// for numerical accuracy.
int i, non_missing = 0;
double xmean = 0.0, ymean = 0.0;
for (i = 0; i < n; i++) {
if (!gr_missing(x[i]) && !gr_missing(y[i])) {
xmean += x[i];
ymean += y[i];
non_missing++;
}
}
if (non_missing == 0)
return 0.0;
xmean /= non_missing;
ymean /= non_missing;
double syy = 0.0, sxy = 0.0, sxx = 0.0;
double xtmp, ytmp;
for (i = 0; i < n; i++) {
if (!gr_missing(x[i]) && !gr_missing(y[i])) {
xtmp = x[i] - xmean;
ytmp = y[i] - ymean;
sxx += xtmp * xtmp;
syy += ytmp * ytmp;
sxy += xtmp * ytmp;
}
}
return (sxy / sqrt(sxx * syy));
}
// RMS deviation to model y=a+bx
double
rms_deviation(double x[], double y[], int n, double a, double b)
{
int non_missing = 0;
double sum = 0.0, dev;
for (int i = 0; i < n; i++) {
if (!gr_missing(x[i]) && !gr_missing(y[i])) {
dev = y[i] - a - b * x[i];
sum += dev * dev;
non_missing++;
}
}
if (non_missing == 0)
return gr_currentmissingvalue();
return sqrt(sum / non_missing);
}
// Returns number good data
static double sqrarg;
#define SQR(a) (sqrarg=(a),sqrarg*sqrarg)
int
fit(double x[], double y[], int ndata,
double sig[], int mwt,
double *a, double *b,
double *siga, double *sigb,
double *chi2, double *q)
{
int i;
int good = 0;
double wt, t, sxoss, sx = 0.0, sy = 0.0, st2 = 0.0, ss, sigdat;
*b = 0.0;
if (mwt) {
ss = 0.0;
for (i = 0; i < ndata; i++) {
if (!gr_missing(x[i]) && !gr_missing(y[i]) && !gr_missing(sig[i])) {
wt = 1.0 / SQR(sig[i]);
sx += x[i] * wt;
sy += y[i] * wt;
ss += wt;
good++;
}
}
} else {
ss = 0.0;
for (i = 0; i < ndata; i++) {
if (!gr_missing(x[i]) && !gr_missing(y[i])) {
sx += x[i];
sy += y[i];
ss += 1.0;
good++;
}
}
}
sxoss = sx / ss;
if (mwt) {
for (i = 0; i < ndata; i++) {
if (!gr_missing(x[i]) && !gr_missing(y[i]) && !gr_missing(sig[i])) {
t = (x[i] - sxoss) / sig[i];
st2 += t * t;
*b += t * y[i] / sig[i];
}
}
} else {
for (i = 0; i < ndata; i++) {
if (!gr_missing(x[i]) && !gr_missing(y[i])) {
t = x[i] - sxoss;
st2 += t * t;
*b += t * y[i];
}
}
}
*b /= st2;
*a = (sy - sx * (*b)) / ss;
*siga = sqrt((1.0 + sx * sx / (ss * st2)) / ss);
*sigb = sqrt(1.0 / st2);
*chi2 = 0.0;
if (mwt == 0) {
for (i = 0; i < ndata; i++)
if (!gr_missing(x[i]) && !gr_missing(y[i]))
*chi2 += SQR(y[i] - (*a) - (*b) * x[i]);
*q = 1.0;
if (good > 2) {
sigdat = sqrt((*chi2) / (good - 2));
*siga *= sigdat;
*sigb *= sigdat;
} else {
*siga = -1.0;
*sigb = -1.0;
}
} else {
for (i = 0; i < ndata; i++)
if (!gr_missing(x[i]) && !gr_missing(y[i]) && !gr_missing(sig[i]))
*chi2 += SQR((y[i] - (*a) - (*b) * x[i]) / sig[i]);
if (good > 2) {
*q = gammq(0.5 * (good - 2), 0.5 * (*chi2));
sigdat = sqrt((*chi2) / (good - 2));
*siga *= sigdat;
*sigb *= sigdat;
} else {
*q = -1.0;
*siga = -1.0;
*sigb = -1.0;
}
}
return good;
}
#undef SQR
double
gammln(double xx)
{
double x, tmp, ser;
static double cof[6] =
{76.18009173, -86.50532033, 24.01409822,
-1.231739516, 0.120858003e-2, -0.536382e-5};
int j;
x = xx - 1.0;
tmp = x + 5.5;
tmp -= (x + 0.5) * log(tmp);
ser = 1.0;
for (j = 0; j <= 5; j++) {
x += 1.0;
ser += cof[j] / x;
}
return -tmp + log(2.50662827465 * ser);
}
double
gammq(double a, double x)
{
double gamser, gammcf, gln;
if (x < 0.0 || a <= 0.0) {
err("regress: Invalid arguments in routine GAMMQ");
return 0;
}
if (x < (a + 1.0)) {
gser(&gamser, a, x, &gln);
return 1.0 - gamser;
} else {
gcf(&gammcf, a, x, &gln);
return gammcf;
}
}
#define ITMAX 100
#define EPS 3.0e-7
void
gcf(double *gammcf, double a, double x, double *gln)
{
int n;
double gold = 0.0, g, fac = 1.0, b1 = 1.0;
double b0 = 0.0, anf, ana, an, a1, a0 = 1.0;
*gln = gammln(a);
a1 = x;
for (n = 0; n < ITMAX; n++) {
an = (double) n;
ana = an - a;
a0 = (a1 + a0 * ana) * fac;
b0 = (b1 + b0 * ana) * fac;
anf = an * fac;
a1 = x * a0 + anf * a1;
b1 = x * b0 + anf * b1;
if (a1) {
fac = 1.0 / a1;
g = b1 * fac;
if (fabs((g - gold) / g) < EPS) {
*gammcf = exp(-x + a * log(x) - (*gln)) * g;
return;
}
gold = g;
}
}
err("regress: a too large, ITMAX too small in routine GCF");
return;
}
#undef ITMAX
#undef EPS
#define ITMAX 100
#define EPS 3.0e-7
void
gser(double *gamser, double a, double x, double *gln)
{
int n;
double sum, del, ap;
*gln = gammln(a);
if (x <= 0.0) {
if (x < 0.0) {
err("regress:x less than 0 in routine GSER");
return;
}
*gamser = 0.0;
return;
} else {
ap = a;
sum = 1.0 / a;
del = sum;
for (n = 0; n < ITMAX; n++) {
ap += 1.0;
del *= x / ap;
sum += del;
if (fabs(del) < fabs(sum) * EPS) {
*gamser = sum * exp(-x + a * log(x) - (*gln));
return;
}
}
err("regress:a too large, ITMAX too small in routine GSER");
return;
}
}
#undef ITMAX
#undef EPS
// From table in a book.
double
student_t_025(int nu)
{
static double t_025[30] = {
12.706, // for nu=1
4.303, // for nu=2
3.182,
2.776,
2.571,
2.447,
2.365,
2.306,
2.262,
2.228,
2.201,
2.179,
2.160,
2.145,
2.131,
2.120,
2.110,
2.101,
2.093,
2.086,
2.080,
2.074,
2.069,
2.064,
2.060,
2.056,
2.052,
2.048,
2.045,
2.042 // for nu=30
};
if (nu < 1)
return t_025[0]; // dunno what to do
else if (nu <= 30)
return t_025[nu - 1];
else if (nu <= 40)
return 2.021;
else if (nu <= 60)
return 2.000;
else if (nu <= 120)
return 1.98;
else
return 1.96;
}
|