File: implementation.cu

package info (click to toggle)
gridtools 2.3.8-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 21,264 kB
  • sloc: cpp: 107,228; python: 17,464; javascript: 9,164; ansic: 4,227; sh: 850; f90: 393; makefile: 230
file content (72 lines) | stat: -rw-r--r-- 2,617 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/*
 * GridTools
 *
 * Copyright (c) 2014-2019, ETH Zurich
 * All rights reserved.
 *
 * Please, refer to the LICENSE file in the root directory.
 * SPDX-License-Identifier: BSD-3-Clause
 */
#include "implementation.cpp"

#include <iostream>

namespace gpu_array {
    template <class T>
    struct my_array {
        using data_t = T;

        T *data;
        int sizes[3];
        int strides[3];

        __device__ const T &operator()(int i, int j, int k) const {
            assert(i < sizes[0] && j < sizes[1] && k < sizes[2] && "out of bounds");
            return data[i * strides[0] + j * strides[1] + k * strides[2]];
        }

        __device__ T &operator()(int i, int j, int k) {
            assert(i < sizes[0] && j < sizes[1] && k < sizes[2] && "out of bounds");
            return data[i * strides[0] + j * strides[1] + k * strides[2]];
        }
    };

    template <typename T>
    my_array<T> bindgen_make_fortran_array_view(bindgen_fortran_array_descriptor *descriptor, my_array<T> *) {
        if (descriptor->rank != 3) {
            throw std::runtime_error("only 3-dimensional arrays are supported");
        }
        cudaPointerAttributes attributes;
        auto ret = cudaPointerGetAttributes(&attributes, descriptor->data);
        if (ret != cudaSuccess || attributes.memoryType != cudaMemoryTypeDevice) {
            throw std::runtime_error("no gpu pointer");
        }
        return my_array<T>{static_cast<T *>(descriptor->data),
            {descriptor->dims[0], descriptor->dims[1], descriptor->dims[2]},
            {1, descriptor->dims[0], descriptor->dims[0] * descriptor->dims[1]}};
    }

    template <typename T>
    bindgen_fortran_array_descriptor get_fortran_view_meta(my_array<T> *) {
        bindgen_fortran_array_descriptor descriptor;
        descriptor.type = cpp_bindgen::fortran_array_element_kind<T>::value;
        descriptor.rank = 3;
        descriptor.is_acc_present = true;
        return descriptor;
    }

    static_assert(cpp_bindgen::is_fortran_array_bindable<my_array<double>>::value, "");
    static_assert(cpp_bindgen::is_fortran_array_wrappable<my_array<double>>::value, "");
} // namespace gpu_array

namespace {
    __global__ void fill_array_kernel(gpu_array::my_array<double> a) {
        for (size_t i = 0; i < a.sizes[2]; ++i) {
            a(threadIdx.x, blockIdx.x, i) = threadIdx.x * 10000 + blockIdx.x * 100 + i;
        }
    }

    void fill_gpu_array_impl(gpu_array::my_array<double> a) { fill_array_kernel<<<a.sizes[1], a.sizes[0]>>>(a); }

    BINDGEN_EXPORT_BINDING_WRAPPED_1(fill_gpu_array, fill_gpu_array_impl);
} // namespace