File: copy_stencil.cpp

package info (click to toggle)
gridtools 2.3.9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 29,480 kB
  • sloc: cpp: 228,792; python: 17,561; javascript: 9,164; ansic: 4,101; sh: 850; makefile: 231; f90: 201
file content (92 lines) | stat: -rw-r--r-- 2,888 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
/*
 * GridTools
 *
 * Copyright (c) 2014-2023, ETH Zurich
 * All rights reserved.
 *
 * Please, refer to the LICENSE file in the root directory.
 * SPDX-License-Identifier: BSD-3-Clause
 */

/**
  @file
  This file shows an implementation of the "copy" stencil, simple copy of one field done on the backend.
*/

#include <cstdlib>
#include <iostream>

#include <gridtools/common/defs.hpp>
#include <gridtools/stencil/cartesian.hpp>
#include <gridtools/storage/builder.hpp>
#include <gridtools/storage/sid.hpp>

#ifdef GT_CUDACC
#include <gridtools/stencil/gpu.hpp>
#include <gridtools/storage/gpu.hpp>
using stencil_backend_t = gridtools::stencil::gpu<>;
using storage_traits_t = gridtools::storage::gpu;
#else
#include <gridtools/stencil/cpu_ifirst.hpp>
#include <gridtools/storage/cpu_ifirst.hpp>
using stencil_backend_t = gridtools::stencil::cpu_ifirst<>;
using storage_traits_t = gridtools::storage::cpu_ifirst;
#endif

namespace gt = gridtools;

// This is the stencil operator which copies the value from `in` to `out`.
struct copy_functor {
    using in = gt::stencil::cartesian::in_accessor<0>;
    using out = gt::stencil::cartesian::inout_accessor<1>;
    using param_list = gt::stencil::make_param_list<in, out>;

    template <class Eval>
    GT_FUNCTION static void apply(Eval &&eval) {
        eval(out()) = eval(in());
    }
};

int main(int argc, char **argv) {
    int d1, d2, d3;

    if (argc != 4) {
        std::cerr << "Usage: " << argv[0] << " dimx dimy dimz\n";
        return 1;
    } else {
        d1 = atoi(argv[1]);
        d2 = atoi(argv[2]);
        d3 = atoi(argv[3]);
    }

    // Add dimensions to the storage builder
    auto storage_builder = gt::storage::builder<storage_traits_t>.dimensions(d1, d2, d3);

    auto f = [](int i, int j, int k) { return i + j + k; };

    // Build input storage
    auto in = storage_builder.initializer(f).type<const double>().build();

    // Build the storage to collect the result
    auto out = storage_builder.type<double>().build();

    // Now we describe the iteration space. In this simple example the iteration space is just described by the full
    // grid (no particular care has to be taken to describe halo points).
    auto grid = gt::stencil::make_grid(d1, d2, d3);

    // Execute the computation
    gt::stencil::run_single_stage(copy_functor(), stencil_backend_t(), grid, in, out);

    // Compare the result
    auto view = out->const_host_view();
    for (int k = 0; k < d3; ++k)
        for (int i = 0; i < d1; ++i)
            for (int j = 0; j < d2; ++j)
                if (view(i, j, k) != f(i, j, k)) {
                    std::cerr << "error in " << i << ", " << j << ", " << k << ": "
                              << "actual = " << view(i, j, k) << ", expected = " << f(i, j, k) << std::endl;
                    return 1;
                }

    std::cout << "Success" << std::endl;
};