File: plot.py

package info (click to toggle)
gridtools 2.3.9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 29,480 kB
  • sloc: cpp: 228,792; python: 17,561; javascript: 9,164; ansic: 4,101; sh: 850; makefile: 231; f90: 201
file content (395 lines) | stat: -rw-r--r-- 13,830 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# -*- coding: utf-8 -*-

import functools
import itertools
import pathlib
import typing

import dateutil.parser
import matplotlib
from matplotlib import pyplot as plt
import numpy as np

from pyutils import log
from perftest import html

plt.style.use('ggplot')


class _OutputKey(typing.NamedTuple):
    name: str
    backend: str
    float_type: str

    def __str__(self):
        name = self.name.replace('_', ' ').title()
        backend = self.backend.upper()
        float_type = self.float_type
        return f'{name} ({backend}, {float_type})'

    @classmethod
    def outputs_by_key(cls, data):
        def split_output(o):
            return cls(**{k: v
                          for k, v in o.items() if k != 'series'}), o['series']

        return dict(split_output(o) for o in data['outputs'])


class _ConfidenceInterval(typing.NamedTuple):
    lower: float
    upper: float

    def classify(self):
        assert self.lower <= self.upper

        # large uncertainty
        if self.upper - self.lower > 0.1:
            return '??'

        # no change
        if -0.01 <= self.lower <= 0 <= self.upper <= 0.01:
            return '='
        if -0.02 <= self.lower <= self.upper <= 0.02:
            return '(=)'

        # probably no change, but quite large uncertainty
        if -0.05 <= self.lower <= 0 <= self.upper <= 0.05:
            return '?'

        # faster
        if -0.01 <= self.lower <= 0.0:
            return '(+)'
        if -0.05 <= self.lower <= -0.01:
            return '+'
        if -0.1 <= self.lower <= -0.05:
            return '++'
        if self.lower <= -0.1:
            return '+++'

        # slower
        if 0.01 >= self.upper >= 0.0:
            return '(-)'
        if 0.05 >= self.upper >= 0.01:
            return '-'
        if 0.1 >= self.upper >= 0.05:
            return '--'
        if self.upper >= 0.1:
            return '---'

        # no idea
        return '???'

    def significant(self):
        return '=' not in self.classify()

    def __str__(self):
        assert self.lower <= self.upper
        plower, pupper = 100 * self.lower, 100 * self.upper

        if self.lower <= 0 and self.upper <= 0:
            return f'{-pupper:3.1f}% – {-plower:3.1f}% faster'
        if self.lower >= 0 and self.upper >= 0:
            return f'{plower:3.1f}% – {pupper:3.1f}% slower'
        return f'{-plower:3.1f}% faster – {pupper:3.1f}% slower'

    @classmethod
    def compare_medians(cls, before, after, n=1000, alpha=0.05):
        scale = np.median(before)
        before = np.asarray(before) / scale
        after = np.asarray(after) / scale
        # bootstrap sampling
        before_samples = np.random.choice(before, (before.size, n))
        after_samples = np.random.choice(after, (after.size, n))
        # bootstrap estimates of difference of medians
        bootstrap_estimates = (np.median(after_samples, axis=0) -
                               np.median(before_samples, axis=0))
        # percentile bootstrap confidence interval
        ci = np.quantile(bootstrap_estimates, [alpha / 2, 1 - alpha / 2])
        log.debug(f'Boostrap results (n = {n}, alpha = {alpha})',
                  f'{ci[0]:8.5f} - {ci[1]:8.5f}')
        return cls(*ci)


def _add_comparison_table(report, cis):
    names = list(sorted(set(k.name for k in cis.keys())))
    backends = list(sorted(set(k.backend for k in cis.keys())))

    def css_class(classification):
        if '-' in classification:
            return 'bad'
        if '?' in classification:
            return 'unknown'
        if '+' in classification:
            return 'good'
        return ''

    with report.table('Comparison') as table:
        with table.row() as row:
            row.fill('BENCHMARK', *(b.upper() for b in backends))

        for name in names:
            with table.row() as row:
                name_cell = row.cell(name.replace('_', ' ').title())
                row_classification = ''
                for backend in backends:
                    try:
                        classification = [
                            cis[_OutputKey(name=name,
                                           backend=backend,
                                           float_type=float_type)].classify()
                            for float_type in ('float', 'double')
                        ]
                        if classification[0] == classification[1]:
                            classification = classification[0]
                        else:
                            classification = ' '.join(classification)
                    except KeyError:
                        classification = ''
                    row_classification += classification
                    row.cell(classification).set('class',
                                                 css_class(classification))
                name_cell.set('class', css_class(row_classification))

    with report.table('Explanation of Symbols') as table:

        def add_help(string, meaning):
            with table.row() as row:
                row.fill(string, meaning)

        add_help('Symbol', 'MEANING')
        add_help('=', 'No performance change (confidence interval within ±1%)')
        add_help(
            '(=)',
            'Probably no performance change (confidence interval within ±2%)')
        add_help('(+)/(-)',
                 'Very small performance improvement/degradation (≤1%)')
        add_help('+/-', 'Small performance improvement/degradation (≤5%)')
        add_help('++/--', 'Large performance improvement/degradation (≤10%)')
        add_help('+++/---',
                 'Very large performance improvement/degradation (>10%)')
        add_help(
            '?', 'Probably no change, but quite large uncertainty '
            '(confidence interval with ±5%)')
        add_help('??', 'Unclear result, very large uncertainty (±10%)')
        add_help('???', 'Something unexpected…')

    log.debug('Generated performance comparison table')


def _histogram_plot(title, before, after, output):
    fig, ax = plt.subplots(figsize=(10, 5))
    bins = np.linspace(0, max(np.amax(before), np.amax(after)), 50)
    ax.hist(before, alpha=0.5, bins=bins, density=True, label='Before')
    ax.hist(after, alpha=0.5, bins=bins, density=True, label='After')
    style = iter(plt.rcParams['axes.prop_cycle'])
    ax.axvline(np.median(before), **next(style))
    ax.axvline(np.median(after), **next(style))
    ax.legend(loc='upper left')
    ax.set_xlabel('Time [s]')
    ax.set_title(title)
    fig.tight_layout()
    fig.savefig(output)
    log.debug(f'Successfully written histogram plot to {output}')
    plt.close(fig)


def _add_comparison_plots(report, before_outs, after_outs, cis):
    with report.image_grid('Details') as grid:
        for k, ci in cis.items():
            if ci.significant():
                title = (str(k) + ': ' + str(ci))
                _histogram_plot(title, before_outs[k], after_outs[k],
                                grid.image())


def _add_info(report, labels, data):
    with report.table('Info') as table:
        with table.row() as row:
            row.fill('Property', *labels)

        for k in {k for d in data for k in d['gridtools'].keys()}:
            with table.row() as row:
                row.cell('GridTools ' + k.title())
                for d in data:
                    row.cell(d['gridtools'].get(k, '—'))

        for k in {k for d in data for k in d['environment'].keys()}:
            with table.row() as row:
                row.cell(k.title())
                for d in data:
                    row.cell(d['environment'].get(k, '—'))


def compare(before, after, output):
    before_outs = _OutputKey.outputs_by_key(before)
    after_outs = _OutputKey.outputs_by_key(after)
    cis = {
        k: _ConfidenceInterval.compare_medians(before_outs[k], v)
        for k, v in after_outs.items() if k in before_outs
    }

    assert before['domain'] == after['domain']
    title = 'GridTools Performance for Domain ' + '×'.join(
        str(d) for d in after['domain'])
    with html.Report(output, title) as report:
        _add_comparison_table(report, cis)
        _add_comparison_plots(report, before_outs, after_outs, cis)
        _add_info(report, ['Before', 'After'], [before, after])


class _Measurements(typing.NamedTuple):
    min: list
    q1: list
    q2: list
    q3: list
    max: list

    def append(self, *values):
        assert len(self) == len(values)
        for l, v in zip(self, values):
            l.append(v)


def _history_data(data, key, limit):
    def get_datetime(result):
        source = 'gridtools' if key == 'commit' else 'environment'
        return dateutil.parser.isoparse(result[source]['datetime'])

    data = sorted(data, key=get_datetime)
    if limit:
        data = data[-limit:]

    datetimes = [get_datetime(d) for d in data]
    outputs = [_OutputKey.outputs_by_key(d) for d in data]

    keys = set.union(*(set(o.keys()) for o in outputs))
    measurements = {k: _Measurements([], [], [], [], []) for k in keys}
    for o in outputs:
        for k in keys:
            try:
                data = np.percentile(o[k], [0, 25, 50, 75, 100])
            except KeyError:
                data = [np.nan] * 5
            measurements[k].append(*data)

    return datetimes, measurements


def _history_plot(title, dates, measurements, output):
    fig, ax = plt.subplots(figsize=(10, 5))
    dates = [matplotlib.dates.date2num(d) for d in dates]
    if len(dates) > len(set(dates)):
        log.warning('Non-unique dates in history plot')

    locator = matplotlib.dates.AutoDateLocator()
    formatter = matplotlib.dates.AutoDateFormatter(locator)
    formatter.scaled[1 / 24] = '%y-%m-%d %H:%M'
    formatter.scaled[1 / (24 * 60)] = '%y-%m-%d %H:%M'
    formatter.scaled[1 / (24 * 60 * 60)] = '%y-%m-%d %H:%M:%S'

    ax.set_title(title)
    ax.xaxis.set_major_locator(locator)
    ax.xaxis.set_major_formatter(formatter)

    style = next(iter(plt.rcParams['axes.prop_cycle']))
    ax.fill_between(dates,
                    measurements.min,
                    measurements.max,
                    alpha=0.2,
                    **style)
    ax.fill_between(dates,
                    measurements.q1,
                    measurements.q3,
                    alpha=0.5,
                    **style)
    ax.plot(dates, measurements.q2, '|-', **style)
    ax.set_ylim(bottom=0)
    ax.set_ylabel('Time [s]')
    fig.autofmt_xdate()
    fig.tight_layout()
    fig.savefig(output, dpi=300)
    log.debug(f'Successfully written history plot to {output}')
    plt.close(fig)


def history(data, output, key='job', limit=None):
    assert all(d['domain'] == data[0]['domain'] for d in data)

    title = 'GridTools Performance History for Domain ' + '×'.join(
        str(d) for d in data[0]['domain'])
    with html.Report(output, title) as report:
        dates, measurements = _history_data(data, key, limit)

        with report.image_grid() as grid:
            for k, m in sorted(measurements.items()):
                _history_plot(str(k), dates, m, grid.image())


def _bar_plot(title, labels, datas, output):
    def fmt(seconds, *args):
        return f'{seconds * 1000:.2f} ms'

    fig, ax = plt.subplots(figsize=(10, 5))
    x0 = 0
    xticklabels = []
    for label, data in zip(labels, datas):
        if data:
            x = x0 + np.arange(len(data))
            x0 += len(data)
            keys, values = zip(*sorted(data.items()))
            bars = ax.bar(x, values, label=label)
            for bar in bars:
                ax.text(bar.get_x() + bar.get_width() / 2,
                        bar.get_height(),
                        fmt(bar.get_height()),
                        ha='center',
                        va='bottom')
            xticklabels += [k.upper() for k in keys]

    ax.legend(loc='upper left')
    ax.set_xticks(np.arange(len(xticklabels)))
    ax.set_xticklabels(xticklabels)
    ax.set_title(title)
    ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(fmt))
    fig.tight_layout()
    fig.savefig(output, dpi=300)
    log.debug(f'Successfully written bar plot to {output}')
    plt.close(fig)


def _add_backend_comparison_plots(report, data):
    outputs = [_OutputKey.outputs_by_key(d) for d in data]

    envs = (envfile.stem.replace('_', '-').upper()
            for envfile in (pathlib.Path(d['environment']['envfile'])
                            for d in data))
    labels = [f'Configuration {i + 1} ({env})' for i, env in enumerate(envs)]

    float_types = {k.float_type for o in outputs for k in o.keys()}
    backends = {k.backend for o in outputs for k in o.keys()}
    names = {k.name for o in outputs for k in o.keys()}

    for float_type in sorted(float_types):
        with report.image_grid(float_type.upper()) as grid:
            for name in sorted(names):
                key = functools.partial(_OutputKey,
                                        float_type=float_type,
                                        name=name)
                title = name.replace('_', ' ').title()
                data = [{
                    backend: np.median(output[key(backend=backend)])
                    for backend in backends if key(backend=backend) in output
                } for output in outputs]
                _bar_plot(title, labels, data, grid.image())


def compare_backends(data, output):
    assert all(d['domain'] == data[0]['domain'] for d in data)

    title = 'GridTools Backends Comparison for Domain ' + '×'.join(
        str(d) for d in data[0]['domain'])
    with html.Report(output, title) as report:
        _add_backend_comparison_plots(report, data)
        _add_info(report, [f'Configuration {i + 1}' for i in range(len(data))],
                  data)