1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
/*
* GridTools
*
* Copyright (c) 2014-2023, ETH Zurich
* All rights reserved.
*
* Please, refer to the LICENSE file in the root directory.
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <cassert>
#include <vector>
#include <gtest/gtest.h>
#include <mpi.h>
#include <gridtools/boundaries/boundary.hpp>
#include <gridtools/boundaries/grid_predicate.hpp>
#include <gridtools/common/array.hpp>
#include <gridtools/common/layout_map.hpp>
#include <gridtools/gcl/GCL.hpp>
#include <gridtools/gcl/halo_exchange.hpp>
#include <gridtools/stencil/cartesian.hpp>
#include <gridtools/storage/builder.hpp>
#include <gridtools/storage/sid.hpp>
#include <gridtools/storage/traits.hpp>
#include <gcl_select.hpp>
#include <stencil_select.hpp>
/** @file
@brief This file shows an implementation of the "copy" stencil in parallel with boundary conditions*/
using namespace gridtools;
using namespace stencil;
using namespace cartesian;
// These are the stencil operators that compose the multistage stencil in this test
struct copy_functor {
using in = in_accessor<0>;
using out = inout_accessor<1>;
using param_list = make_param_list<in, out>;
template <typename Evaluation>
GT_FUNCTION static void apply(Evaluation &eval) {
eval(out()) = eval(in());
}
};
/** @brief example of boundary conditions with predicate
*/
struct boundary_conditions {
template <typename Direction, typename DataField0, typename DataField1>
GT_FUNCTION void operator()(
Direction, DataField0 &data_field0, DataField1 &data_field1, uint_t i, uint_t j, uint_t k) const {
data_field0(i, j, k) = -1.11111111;
data_field1(i, j, k) = -1.11111111;
}
};
TEST(copy_stencil_parallel, test) {
uint_t d1 = 13, d2 = 11, d3 = 7;
//! [proc_grid_dims]
MPI_Comm CartComm;
array<int, 3> dimensions{0, 0, 1};
int period[3] = {1, 1, 1};
MPI_Dims_create(gcl::procs(), 2, &dimensions[0]);
assert(dimensions[2] == 1);
MPI_Cart_create(MPI_COMM_WORLD, 3, &dimensions[0], period, false, &CartComm);
using pattern_type = gcl::halo_exchange_dynamic_ut<storage::traits::layout_type<storage_traits_t, 3>,
layout_map<0, 1, 2>,
double,
gcl_arch_t>;
pattern_type he({false, false, false}, CartComm);
array<uint_t, 2> halo{1, 1};
if (gcl::procs() == 1) // serial execution
halo[0] = halo[1] = 0;
// Definition of the actual data fields that are used for input/output
he.add_halo<0>(halo[0], halo[0], halo[0], d1 + halo[0] - 1, d1 + 2 * halo[0]);
he.add_halo<0>(halo[1], halo[1], halo[1], d2 + halo[1] - 1, d2 + 2 * halo[1]);
he.add_halo<0>(0, 0, 0, d3 - 1, d3);
he.setup(3);
auto c_grid = he.comm();
int pi, pj, pk;
c_grid.coords(pi, pj, pk);
assert(pk == 0);
size_t x = d1 + 2 * halo[0];
size_t y = d2 + 2 * halo[1];
auto builder = storage::builder<storage_traits_t>.type<double>().dimensions(x, y, d3);
auto input = [&](int i, int j, int k) {
int I = i + x * pi;
int J = j + y * pj;
int K = k;
return I + J + K;
};
auto in = builder.initializer(input)();
auto out = builder.value(-2.2222222)();
// Definition of the physical dimensions of the problem.
// The constructor takes the horizontal plane dimensions,
// while the vertical ones are set according the the axis property soon after
auto grid = make_grid({halo[0], halo[0], halo[0], d1 + halo[0] - 1, d1 + 2 * halo[0]},
{halo[1], halo[1], halo[1], d2 + halo[1] - 1, d2 + 2 * halo[1]},
d3);
run_single_stage(copy_functor(), stencil_backend_t(), grid, in, out);
array<halo_descriptor, 3> halos;
halos[0] = halo_descriptor(halo[0], halo[0], halo[0], d1 + halo[0] - 1, d1 + 2 * halo[0]);
halos[1] = halo_descriptor(halo[1], halo[1], halo[1], d2 + halo[1] - 1, d2 + 2 * halo[1]);
halos[2] = halo_descriptor(0, 0, 0, d3 - 1, d3);
boundaries::boundary<boundary_conditions, gcl_arch_t, boundaries::proc_grid_predicate<decltype(c_grid)>>(
halos, boundary_conditions(), boundaries::proc_grid_predicate<decltype(c_grid)>(c_grid))
.apply(in, out);
std::vector<double *> vec = {in->get_target_ptr(), out->get_target_ptr()};
he.pack(vec);
he.exchange();
he.unpack(vec);
MPI_Barrier(gcl::world());
auto v_out_h = out->const_host_view();
for (uint_t i = halo[0]; i < d1 - halo[0]; ++i)
for (uint_t j = halo[1]; j < d2 - halo[1]; ++j)
for (uint_t k = 1; k < d3; ++k)
EXPECT_EQ(v_out_h(i, j, k), input(i, j, k))
<< " pid = " << gcl::pid() << "i = " << i << "; j = " << j << "; k = " << k;
}
|