1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
/*
* GridTools
*
* Copyright (c) 2014-2023, ETH Zurich
* All rights reserved.
*
* Please, refer to the LICENSE file in the root directory.
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <gtest/gtest.h>
#include <gridtools/fn/sid_neighbor_table.hpp>
#include <gridtools/fn/unstructured.hpp>
#include <gridtools/sid/dimension_to_tuple_like.hpp>
#include <fn_select.hpp>
#include <test_environment.hpp>
namespace {
using namespace gridtools;
using namespace fn;
using namespace literals;
struct zavg_stencil {
constexpr auto operator()() const {
return [](auto const &pp, auto const &s) {
std::decay_t<decltype(deref(pp))> tmp = 0;
tuple_util::host_device::for_each(
[&](auto i) {
auto shifted_pp = shift(pp, e2v(), i);
tmp += deref(shifted_pp);
},
meta::rename<tuple, meta::make_indices_c<2>>());
tmp /= 2;
auto ss = deref(s);
return make_tuple(tmp * tuple_get(0_c, ss), tmp * tuple_get(1_c, ss));
};
}
};
struct nabla_stencil {
constexpr auto operator()() const {
return [](auto const &zavg, auto const &sign, auto const &vol) {
using float_t = std::decay_t<decltype(deref(vol))>;
auto signs = deref(sign);
tuple<float_t, float_t> tmp(0, 0);
tuple_util::host_device::for_each(
[&](auto i) {
auto const shifted_zavg = shift(zavg, v2e(), i);
bool const edge_exists = can_deref(shifted_zavg);
auto const value = edge_exists ? deref(shifted_zavg) : tuple<float_t, float_t>(0, 0);
tuple_get(0_c, tmp) += tuple_get(0_c, value) * get<i.value>(signs);
tuple_get(1_c, tmp) += tuple_get(1_c, value) * get<i.value>(signs);
},
meta::rename<tuple, meta::make_indices_c<6>>());
auto v = deref(vol);
return make_tuple(tuple_get(0_c, tmp) / v, tuple_get(1_c, tmp) / v);
};
}
};
struct nabla_stencil_fused {
constexpr auto operator()() const {
return [](auto const &sign, auto const &vol, auto const &pp, auto const &s) {
using float_t = std::decay_t<decltype(deref(vol))>;
auto signs = deref(sign);
tuple<float_t, float_t> tmp(0, 0);
tuple_util::host_device::for_each(
[&](auto i) {
auto const shifted_s = shift(s, v2e(), i);
bool const edge_exists = can_deref(shifted_s);
float_t tmp2 = 0;
tuple_util::host_device::for_each(
[&](auto const &j) {
auto shifted_pp = shift(pp, v2e(), i, e2v(), j);
tmp2 += edge_exists ? deref(shifted_pp) : 0;
},
meta::rename<tuple, meta::make_indices_c<2>>());
tmp2 /= 2;
auto ss = edge_exists ? deref(shifted_s) : tuple<float_t, float_t>(0, 0);
auto zavg = tuple(tmp2 * tuple_get(0_c, ss), tmp2 * tuple_get(1_c, ss));
tuple_get(0_c, tmp) += tuple_get(0_c, zavg) * get<i.value>(signs);
tuple_get(1_c, tmp) += tuple_get(1_c, zavg) * get<i.value>(signs);
},
meta::rename<tuple, meta::make_indices_c<6>>());
auto v = deref(vol);
return make_tuple(tuple_get(0_c, tmp) / v, tuple_get(1_c, tmp) / v);
};
}
};
constexpr inline auto pp = [](int vertex, int k) { return (vertex + k) % 19; };
constexpr inline auto sign = [](int vertex) { return array<int, 6>{0, 1, vertex % 2, 1, (vertex + 1) % 2, 0}; };
constexpr inline auto vol = [](int vertex) { return vertex % 13 + 1; };
constexpr inline auto s = [](int edge, int k) { return tuple((edge + k) % 17, (edge + k) % 7); };
constexpr inline auto zavg = [](auto const &e2v) {
return [&e2v](int edge, int k) {
double tmp = 0.0;
for (int neighbor = 0; neighbor < 2; ++neighbor)
tmp += pp(e2v(edge, neighbor), k);
tmp /= 2.0;
return tuple{tmp * get<0>(s(edge, k)), tmp * get<1>(s(edge, k))};
};
};
constexpr inline auto expected = [](auto const &v2e, auto const &e2v) {
return [&v2e, zavg = zavg(e2v)](int vertex, int k) {
auto res = tuple(0.0, 0.0);
for (int neighbor = 0; neighbor < 6; ++neighbor) {
int edge = v2e(vertex, neighbor);
if (edge != -1) {
get<0>(res) += get<0>(zavg(edge, k)) * sign(vertex)[neighbor];
get<1>(res) += get<1>(zavg(edge, k)) * sign(vertex)[neighbor];
}
}
get<0>(res) /= vol(vertex);
get<1>(res) /= vol(vertex);
return res;
};
};
constexpr inline auto apply_zavg = [](auto &&executor, auto &zavg, auto const &pp, auto const &s) {
executor().arg(zavg).arg(pp).arg(s).assign(0_c, zavg_stencil(), 1_c, 2_c).execute();
};
constexpr inline auto apply_nabla =
[](auto executor, auto &nabla, auto const &zavg, auto const &sign, auto const &vol) {
executor().arg(nabla).arg(zavg).arg(sign).arg(vol).assign(0_c, nabla_stencil(), 1_c, 2_c, 3_c).execute();
};
constexpr inline auto apply_nabla_fused =
[](auto executor, auto &nabla, auto const &sign, auto const &vol, auto const &pp, auto const &s) {
executor()
.arg(nabla)
.arg(sign)
.arg(vol)
.arg(pp)
.arg(s)
.assign(0_c, nabla_stencil_fused(), 1_c, 2_c, 3_c, 4_c)
.execute();
};
constexpr inline auto fencil = [](auto backend,
int nvertices,
int nedges,
int nlevels,
auto const &v2e_table,
auto const &e2v_table,
auto &nabla,
auto const &pp,
auto const &s,
auto const &sign,
auto const &vol) {
using float_t = std::remove_const_t<sid::element_type<decltype(pp)>>;
auto v2e_conn = connectivity<v2e>(v2e_table);
auto e2v_conn = connectivity<e2v>(e2v_table);
auto edge_domain = unstructured_domain({nedges, nlevels}, {}, e2v_conn);
auto vertex_domain = unstructured_domain({nvertices, nlevels}, {}, v2e_conn);
auto edge_backend = make_backend(backend, edge_domain);
auto vertex_backend = make_backend(backend, vertex_domain);
auto alloc = tmp_allocator(backend);
auto zavg = allocate_global_tmp<tuple<float_t, float_t>>(alloc, edge_domain.sizes());
apply_zavg(edge_backend.stencil_executor(), zavg, pp, s);
apply_nabla(vertex_backend.stencil_executor(), nabla, zavg, sign, vol);
};
constexpr inline auto fencil_fused = [](auto backend,
int nvertices,
int nlevels,
auto const &v2e_table,
auto const &e2v_table,
auto &nabla,
auto const &pp,
auto const &s,
auto const &sign,
auto const &vol) {
auto v2e_conn = connectivity<v2e>(v2e_table);
auto e2v_conn = connectivity<e2v>(e2v_table);
auto vertex_domain = unstructured_domain({nvertices, nlevels}, {}, v2e_conn, e2v_conn);
auto vertex_backend = make_backend(backend, vertex_domain);
apply_nabla_fused(vertex_backend.stencil_executor(), nabla, sign, vol, pp, s);
};
static constexpr int vertex_field_id = 0;
static constexpr int edge_field_id = 1;
using k_blocked_backend_t = meta::if_<meta::is_instantiation_of<backend::gpu, fn_backend_t>,
backend::gpu<meta::list<meta::list<integral_constant<int, 0>, integral_constant<int, 32>>,
meta::list<integral_constant<int, 1>, integral_constant<int, 8>>>,
meta::list<meta::list<integral_constant<int, 1>, integral_constant<int, 5>>>>,
fn_backend_t>;
constexpr inline auto make_comp = [](auto backend, auto const &mesh, auto &nabla) {
using mesh_t = std::remove_reference_t<decltype(mesh)>;
using float_t = typename mesh_t::float_t;
return
[backend,
&nabla,
nvertices = mesh.nvertices(),
nedges = mesh.nedges(),
nlevels = mesh.nlevels(),
v2e_table = mesh.v2e_table(),
e2v_table = mesh.e2v_table(),
pp = mesh.template make_const_storage<float_t, vertex_field_id>(pp, mesh.nvertices(), mesh.nlevels()),
sign = mesh.template make_const_storage<array<float_t, 6>>(sign, mesh.nvertices()),
vol = mesh.make_const_storage(vol, mesh.nvertices()),
s = mesh.template make_const_storage<tuple<float_t, float_t>>(s, mesh.nedges(), mesh.nlevels())] {
auto v2e_ptr = sid_neighbor_table::as_neighbor_table<integral_constant<int, 0>,
integral_constant<int, 1>,
mesh_t::max_v2e_neighbors_t::value>(v2e_table);
auto e2v_ptr = sid_neighbor_table::as_neighbor_table<integral_constant<int, 0>,
integral_constant<int, 1>,
mesh_t::max_e2v_neighbors_t::value>(e2v_table);
fencil(backend, nvertices, nedges, nlevels, v2e_ptr, e2v_ptr, nabla, pp, s, sign, vol);
};
};
constexpr inline auto make_comp_fused = [](auto backend, auto const &mesh, auto &nabla) {
using mesh_t = std::remove_reference_t<decltype(mesh)>;
using float_t = typename mesh_t::float_t;
return
[backend,
&nabla,
nvertices = mesh.nvertices(),
nlevels = mesh.nlevels(),
v2e_table = mesh.v2e_table(),
e2v_table = mesh.e2v_table(),
pp = mesh.template make_const_storage<float_t, vertex_field_id>(pp, mesh.nvertices(), mesh.nlevels()),
sign = mesh.template make_const_storage<array<float_t, 6>>(sign, mesh.nvertices()),
vol = mesh.make_const_storage(vol, mesh.nvertices()),
s = mesh.template make_const_storage<tuple<float_t, float_t>>(s, mesh.nedges(), mesh.nlevels())] {
auto v2e_ptr = sid_neighbor_table::as_neighbor_table<integral_constant<int, 0>,
integral_constant<int, 1>,
mesh_t::max_v2e_neighbors_t::value>(v2e_table);
auto e2v_ptr = sid_neighbor_table::as_neighbor_table<integral_constant<int, 0>,
integral_constant<int, 1>,
mesh_t::max_e2v_neighbors_t::value>(e2v_table);
fencil_fused(backend, nvertices, nlevels, v2e_ptr, e2v_ptr, nabla, pp, s, sign, vol);
};
};
constexpr inline auto make_expected = [](auto const &mesh) {
return [v2e_table = mesh.v2e_table(), e2v_table = mesh.e2v_table()](int vertex, int k) {
auto v2e = v2e_table->const_host_view();
auto e2v = e2v_table->const_host_view();
return expected(v2e, e2v)(vertex, k);
};
};
GT_REGRESSION_TEST(fn_unstructured_nabla_field_of_tuples, test_environment<>, fn_backend_t) {
using float_t = typename TypeParam::float_t;
auto mesh = TypeParam::fn_unstructured_mesh();
auto nabla = mesh.template make_storage<tuple<float_t, float_t>>(mesh.nvertices(), mesh.nlevels());
auto comp = make_comp(fn_backend_t(), mesh, nabla);
comp();
auto expected = make_expected(mesh);
TypeParam::verify(expected, nabla);
TypeParam::benchmark("fn_unstructured_nabla_field_of_tuples", comp);
}
GT_REGRESSION_TEST(fn_unstructured_nabla_fused_field_of_tuples, test_environment<>, k_blocked_backend_t) {
using float_t = typename TypeParam::float_t;
auto mesh = TypeParam::fn_unstructured_mesh();
auto nabla = mesh.template make_storage<tuple<float_t, float_t>>(mesh.nvertices(), mesh.nlevels());
auto comp = make_comp_fused(k_blocked_backend_t(), mesh, nabla);
comp();
auto expected = make_expected(mesh);
TypeParam::verify(expected, nabla);
TypeParam::benchmark("fn_unstructured_nabla_fused_field_of_tuples", comp);
}
GT_REGRESSION_TEST(fn_unstructured_nabla_tuple_of_fields, test_environment<>, fn_backend_t) {
using float_t = typename TypeParam::float_t;
auto mesh = TypeParam::fn_unstructured_mesh();
auto nabla0 = mesh.template make_storage<float_t, vertex_field_id>(mesh.nvertices(), mesh.nlevels());
auto nabla1 = mesh.template make_storage<float_t, vertex_field_id>(mesh.nvertices(), mesh.nlevels());
auto nabla =
sid::composite::keys<integral_constant<int, 0>, integral_constant<int, 1>>::make_values(nabla0, nabla1);
auto comp = make_comp(fn_backend_t(), mesh, nabla);
comp();
auto expected = make_expected(mesh);
TypeParam::verify([&](int vertex, int k) { return get<0>(expected(vertex, k)); }, nabla0);
TypeParam::verify([&](int vertex, int k) { return get<1>(expected(vertex, k)); }, nabla1);
TypeParam::benchmark("fn_unstructured_nabla_tuple_of_fields", comp);
}
GT_REGRESSION_TEST(fn_unstructured_nabla_fused_tuple_of_fields, test_environment<>, k_blocked_backend_t) {
using float_t = typename TypeParam::float_t;
auto mesh = TypeParam::fn_unstructured_mesh();
auto nabla0 = mesh.template make_storage<float_t, vertex_field_id>(mesh.nvertices(), mesh.nlevels());
auto nabla1 = mesh.template make_storage<float_t, vertex_field_id>(mesh.nvertices(), mesh.nlevels());
auto nabla =
sid::composite::keys<integral_constant<int, 0>, integral_constant<int, 1>>::make_values(nabla0, nabla1);
auto comp = make_comp_fused(k_blocked_backend_t(), mesh, nabla);
comp();
auto expected = make_expected(mesh);
TypeParam::verify([&](int vertex, int k) { return get<0>(expected(vertex, k)); }, nabla0);
TypeParam::verify([&](int vertex, int k) { return get<1>(expected(vertex, k)); }, nabla1);
TypeParam::benchmark("fn_unstructured_nabla_fused_tuple_of_fields", comp);
}
GT_REGRESSION_TEST(fn_unstructured_nabla_field_of_dimension_to_tuple_like, test_environment<>, fn_backend_t) {
using float_t = typename TypeParam::float_t;
auto mesh = TypeParam::fn_unstructured_mesh();
auto nabla_tmp =
mesh.template make_storage<float_t>(mesh.nvertices(), mesh.nlevels(), integral_constant<int, 2>{});
auto nabla = sid::dimension_to_tuple_like<integral_constant<int, 2>, 2>(nabla_tmp);
auto comp = make_comp(fn_backend_t(), mesh, nabla);
comp();
auto expected = make_expected(mesh);
TypeParam::verify(
[&](int vertex, int k, int t) {
return t == 0 ? get<0>(expected(vertex, k)) : get<1>(expected(vertex, k));
},
nabla_tmp);
TypeParam::benchmark("fn_unstructured_nabla_dimension_to_tuple_like", comp);
}
} // namespace
|