1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
/*
* GridTools
*
* Copyright (c) 2014-2023, ETH Zurich
* All rights reserved.
*
* Please, refer to the LICENSE file in the root directory.
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <gridtools/fn/cartesian.hpp>
#include <gtest/gtest.h>
#include <gridtools/fn/backend/gpu.hpp>
namespace gridtools::fn {
namespace {
using namespace literals;
using sid::property;
template <int I>
using int_t = integral_constant<int, I>;
struct stencil {
constexpr auto operator()() const {
using namespace cartesian::dim;
return [](auto const &in) { return deref(shift(in, i(), 1_c)); };
}
};
struct fwd_sum_scan : fwd {
static GT_FUNCTION constexpr auto body() {
return scan_pass(
[](auto acc, auto const &iter) { return acc + deref(iter); }, [](auto acc) { return acc; });
}
};
struct bwd_sum_scan : bwd {
static GT_FUNCTION constexpr auto body() {
return scan_pass(
[](auto acc, auto const &iter) { return acc + deref(iter); }, [](auto acc) { return acc; });
}
};
TEST(cartesian, stencil) {
using block_sizes_t = meta::list<meta::list<cartesian::dim::i, int_t<32>>,
meta::list<cartesian::dim::j, int_t<8>>,
meta::list<cartesian::dim::k, int_t<1>>>;
auto apply_stencil = [](auto executor, auto &out, auto const &in) {
executor().arg(out).arg(in).assign(0_c, stencil(), 1_c).execute();
};
auto fencil = [&](auto const &sizes, auto &out, auto const &in) {
auto be = backend::gpu<block_sizes_t>();
auto alloc = tmp_allocator(be);
auto tmp = allocate_global_tmp<int>(alloc, sizes);
auto domain = cartesian_domain(std::array<int, 3>{sizes[0] - 1, sizes[1], sizes[2]});
auto backend = make_backend(be, domain);
apply_stencil(backend.stencil_executor(), tmp, in);
apply_stencil(backend.stencil_executor(), out, tmp);
};
auto in = cuda_util::cuda_malloc<int>(5 * 3 * 2);
auto out = cuda_util::cuda_malloc<int>(5 * 3 * 2);
int inh[5][3][2], outh[5][3][2] = {};
for (int i = 0; i < 5; ++i)
for (int j = 0; j < 3; ++j)
for (int k = 0; k < 2; ++k)
inh[i][j][k] = 6 * i + 2 * j + k;
cudaMemcpy(in.get(), inh, 5 * 3 * 2 * sizeof(int), cudaMemcpyHostToDevice);
auto as_synthetic = [](int *x) {
return sid::synthetic()
.set<property::origin>(sid::host_device::simple_ptr_holder(x))
.set<property::strides>(tuple(6_c, 2_c, 1_c));
};
auto out_s = as_synthetic(out.get());
auto in_s = as_synthetic(in.get());
fencil(std::array{5, 3, 2}, out_s, in_s);
cudaMemcpy(outh, out.get(), 5 * 3 * 2 * sizeof(int), cudaMemcpyDeviceToHost);
for (int i = 0; i < 3; ++i)
for (int j = 0; j < 3; ++j)
for (int k = 0; k < 2; ++k)
EXPECT_EQ(outh[i][j][k], 6 * (i + 2) + 2 * j + k);
}
TEST(cartesian, vertical) {
using block_sizes_t = meta::list<meta::list<cartesian::dim::i, int_t<32>>,
meta::list<cartesian::dim::j, int_t<8>>,
meta::list<cartesian::dim::k, int_t<1>>>;
auto apply_double_scan = [](auto executor, auto &a, auto &b, auto const &c) {
executor()
.arg(a)
.arg(b)
.arg(c)
.assign(1_c, fwd_sum_scan(), 42, 2_c)
.assign(0_c, bwd_sum_scan(), 8, 1_c)
.execute();
};
auto double_scan = [&](auto sizes, auto &a, auto &b, auto const &c) {
auto domain = cartesian_domain(sizes);
auto backend = make_backend(backend::gpu<block_sizes_t>(), domain);
apply_double_scan(backend.vertical_executor(), a, b, c);
};
std::array<int, 3> sizes = {5, 3, 2};
auto a = cuda_util::cuda_malloc<int>(5 * 3 * 2);
auto b = cuda_util::cuda_malloc<int>(5 * 3 * 2);
auto c = cuda_util::cuda_malloc<int>(5 * 3 * 2);
int ah[5][3][2] = {}, bh[5][3][2] = {}, ch[5][3][2];
for (int i = 0; i < 5; ++i)
for (int j = 0; j < 3; ++j)
for (int k = 0; k < 2; ++k)
ch[i][j][k] = 6 * i + 2 * j + k;
cudaMemcpy(c.get(), ch, 5 * 3 * 2 * sizeof(int), cudaMemcpyHostToDevice);
auto as_synthetic = [](int *x) {
return sid::synthetic()
.set<property::origin>(sid::host_device::simple_ptr_holder(x))
.set<property::strides>(tuple(6_c, 2_c, 1_c));
};
auto a_s = as_synthetic(a.get());
auto b_s = as_synthetic(b.get());
auto c_s = as_synthetic(c.get());
double_scan(sizes, a_s, b_s, c_s);
cudaMemcpy(bh, b.get(), 5 * 3 * 2 * sizeof(int), cudaMemcpyDeviceToHost);
cudaMemcpy(ah, a.get(), 5 * 3 * 2 * sizeof(int), cudaMemcpyDeviceToHost);
for (int i = 0; i < 5; ++i)
for (int j = 0; j < 3; ++j) {
int res = 42;
for (int k = 0; k < 2; ++k) {
res += ch[i][j][k];
EXPECT_EQ(bh[i][j][k], res);
}
res = 8;
for (int k = 1; k >= 0; --k) {
res += bh[i][j][k];
EXPECT_EQ(ah[i][j][k], res);
}
}
}
} // namespace
} // namespace gridtools::fn
|