1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
/*
* GridTools
*
* Copyright (c) 2014-2023, ETH Zurich
* All rights reserved.
*
* Please, refer to the LICENSE file in the root directory.
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <gridtools/stencil/cpu_ifirst/tmp_storage_sid.hpp>
#include <gtest/gtest.h>
#include <gridtools/sid/concept.hpp>
#include <gridtools/stencil/common/extent.hpp>
#include <gridtools/thread_pool/omp.hpp>
using namespace gridtools;
using namespace literals;
using namespace stencil;
using namespace cpu_ifirst_backend;
static constexpr std::size_t byte_alignment = 64;
TEST(tmp_storage_sid, allocator) {
tmp_allocator allocator;
std::size_t n = 100;
auto ptr_holder = allocate(allocator, meta::lazy::id<double>(), n);
double *ptr = ptr_holder();
EXPECT_EQ(reinterpret_cast<std::uintptr_t>(ptr) % byte_alignment, 0);
for (std::size_t i = 0; i < n; ++i) {
ptr[i] = 0;
EXPECT_EQ(ptr[i], 0);
}
}
TEST(tmp_storage_sid, nonzero_k_extents) {
using extent_t = extent<-1, 2, -2, 3, -1, 2>;
pos3<std::size_t> block_size{12, 2, 8};
tmp_allocator allocator;
auto tmp = make_tmp_storage<double, extent_t, false, thread_pool::omp>(allocator, block_size);
using tmp_t = decltype(tmp);
static_assert(is_sid<tmp_t>());
static_assert(std::is_same_v<sid::ptr_type<tmp_t>, double *>);
auto f = [](int_t i, int_t j, int_t k, int_t t) { return i + j * 100 + k * 200 + t * 400; };
// check write and read
#pragma omp parallel
{
const int_t thread = omp_get_thread_num();
auto strides = sid::get_strides(tmp);
double *ptr = sid::get_origin(tmp)();
// shift to origin of thread
sid::shift(ptr, sid::get_stride<dim::thread>(strides), thread);
// shift to very first data point in temporary
sid::shift(ptr, sid::get_stride<dim::i>(strides), extent_t::iminus::value);
sid::shift(ptr, sid::get_stride<dim::j>(strides), extent_t::jminus::value);
sid::shift(ptr, sid::get_stride<dim::k>(strides), extent_t::kminus::value);
const int_t size_i = extent_t::extend(dim::i(), block_size.i);
const int_t size_j = extent_t::extend(dim::j(), block_size.j);
const int_t size_k = extent_t::extend(dim::k(), block_size.k);
for (int_t j = 0; j < size_j; ++j) {
for (int_t k = 0; k < size_k; ++k) {
for (int_t i = 0; i < size_i; ++i) {
// check alignment of first data point inside domain
if (i == -extent_t::iminus::value) {
EXPECT_EQ(reinterpret_cast<std::uintptr_t>(ptr) % byte_alignment, 0);
}
*ptr = f(i, j, k, thread);
sid::shift(ptr, sid::get_stride<dim::i>(strides), 1_c);
}
sid::shift(ptr, sid::get_stride<dim::i>(strides), -size_i);
sid::shift(ptr, sid::get_stride<dim::k>(strides), 1_c);
}
sid::shift(ptr, sid::get_stride<dim::k>(strides), -size_k);
sid::shift(ptr, sid::get_stride<dim::j>(strides), 1_c);
}
sid::shift(ptr, sid::get_stride<dim::j>(strides), -size_j);
#pragma omp barrier
for (int_t j = 0; j < size_j; ++j) {
for (int_t k = 0; k < size_k; ++k) {
for (int_t i = 0; i < size_i; ++i) {
// check that previously expected value was not overwritten
EXPECT_EQ(*ptr, f(i, j, k, thread));
sid::shift(ptr, sid::get_stride<dim::i>(strides), 1_c);
}
sid::shift(ptr, sid::get_stride<dim::i>(strides), -size_i);
sid::shift(ptr, sid::get_stride<dim::k>(strides), 1_c);
}
sid::shift(ptr, sid::get_stride<dim::k>(strides), -size_k);
sid::shift(ptr, sid::get_stride<dim::j>(strides), 1_c);
}
}
}
TEST(tmp_storage_sid, zero_k_extents) {
using extent_t = extent<-1, 2, -2, 3, 0, 0>;
pos3<std::size_t> block_size{12, 5, 1};
tmp_allocator allocator;
auto tmp = make_tmp_storage<double, extent_t, true, thread_pool::omp>(allocator, block_size);
using tmp_t = decltype(tmp);
static_assert(is_sid<tmp_t>());
static_assert(std::is_same_v<sid::ptr_type<tmp_t>, double *>);
auto f = [](int_t i, int_t j, int_t t) { return i + j * 100 + t * 200; };
// check write and read
#pragma omp parallel
{
const int_t thread = omp_get_thread_num();
auto strides = sid::get_strides(tmp);
double *ptr = sid::get_origin(tmp)();
// shift to origin of thread
sid::shift(ptr, sid::get_stride<dim::thread>(strides), thread);
// shift to very first data point in temporary
sid::shift(ptr, sid::get_stride<dim::i>(strides), extent_t::iminus::value);
sid::shift(ptr, sid::get_stride<dim::j>(strides), extent_t::jminus::value);
sid::shift(ptr, sid::get_stride<dim::k>(strides), extent_t::kminus::value);
const int_t size_i = extent_t::extend(dim::i(), block_size.i);
const int_t size_j = extent_t::extend(dim::j(), block_size.j);
for (int_t j = 0; j < size_j; ++j) {
for (int_t i = 0; i < size_i; ++i) {
// check alignment of first data point inside domain
if (i == -extent_t::iminus::value) {
EXPECT_EQ(reinterpret_cast<std::uintptr_t>(ptr) % byte_alignment, 0);
}
*ptr = f(i, j, thread);
sid::shift(ptr, sid::get_stride<dim::i>(strides), 1_c);
}
sid::shift(ptr, sid::get_stride<dim::i>(strides), -size_i);
sid::shift(ptr, sid::get_stride<dim::j>(strides), 1_c);
}
sid::shift(ptr, sid::get_stride<dim::j>(strides), -size_j);
#pragma omp barrier
for (int_t j = 0; j < size_j; ++j) {
for (int_t i = 0; i < size_i; ++i) {
// check that previously expected value was not overwritten
EXPECT_EQ(*ptr, f(i, j, thread));
sid::shift(ptr, sid::get_stride<dim::i>(strides), 1_c);
}
sid::shift(ptr, sid::get_stride<dim::i>(strides), -size_i);
sid::shift(ptr, sid::get_stride<dim::j>(strides), 1_c);
}
}
}
|