1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
/*
* GridTools
*
* Copyright (c) 2014-2023, ETH Zurich
* All rights reserved.
*
* Please, refer to the LICENSE file in the root directory.
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <gtest/gtest.h>
#include <gridtools/stencil/cartesian.hpp>
#include <gridtools/stencil/naive.hpp>
#define GT_STENCIL_NAIVE
#include <stencil_select.hpp>
#include <test_environment.hpp>
namespace {
using namespace gridtools;
using namespace stencil;
using namespace cartesian;
using namespace expressions;
struct expandable_parameters : ::testing::Test {
using env_t = test_environment<>::apply<naive, double, inlined_params<13, 9, 7>>;
using storages_t = std::vector<env_t::storage_type>;
template <class Comp, class... Args>
void run_computation(Comp comp, Args &&...args) const {
expandable_run<2>(comp, naive(), env_t::make_grid(), std::forward<Args>(args)...);
}
void verify(storages_t const &expected, storages_t const &actual) const {
EXPECT_EQ(expected.size(), actual.size());
for (size_t i = 0; i != expected.size(); ++i)
env_t::verify(expected[i], actual[i]);
}
};
struct expandable_parameters_copy : expandable_parameters {
storages_t out = {env_t::make_storage(1.),
env_t::make_storage(2.),
env_t::make_storage(3.),
env_t::make_storage(4.),
env_t::make_storage(5.)};
storages_t in = {env_t::make_storage(-1.),
env_t::make_storage(-2.),
env_t::make_storage(-3.),
env_t::make_storage(-4.),
env_t::make_storage(-5.)};
template <class Functor>
void run_computation() {
expandable_parameters::run_computation(
[](auto out, auto in) { return execute_parallel().stage(Functor(), out, in); }, out, in);
}
~expandable_parameters_copy() { verify(in, out); }
};
struct copy_functor {
typedef inout_accessor<0> out;
typedef in_accessor<1> in;
typedef make_param_list<out, in> param_list;
template <typename Evaluation>
GT_FUNCTION static void apply(Evaluation &eval) {
eval(out{}) = eval(in{});
}
};
TEST_F(expandable_parameters_copy, copy) { run_computation<copy_functor>(); }
struct copy_functor_with_expression {
typedef inout_accessor<0> out;
typedef in_accessor<1> in;
typedef make_param_list<out, in> param_list;
template <typename Evaluation>
GT_FUNCTION static void apply(Evaluation &eval) {
// use an expression which is equivalent to a copy to simplify the check
eval(out{}) = eval(2. * in{} - in{});
}
};
TEST_F(expandable_parameters_copy, copy_with_expression) { run_computation<copy_functor_with_expression>(); }
struct call_proc_copy_functor {
typedef inout_accessor<0> out;
typedef in_accessor<1> in;
typedef make_param_list<out, in> param_list;
template <typename Evaluation>
GT_FUNCTION static void apply(Evaluation &eval) {
call_proc<copy_functor>::with(eval, out(), in());
}
};
TEST_F(expandable_parameters_copy, call_proc_copy) { run_computation<call_proc_copy_functor>(); }
struct call_copy_functor {
typedef inout_accessor<0> out;
typedef in_accessor<1> in;
typedef make_param_list<out, in> param_list;
template <typename Evaluation>
GT_FUNCTION static void apply(Evaluation &eval) {
eval(out()) = call<copy_functor>::with(eval, in());
}
};
TEST_F(expandable_parameters_copy, call_copy) { run_computation<call_copy_functor>(); }
struct shift_functor {
typedef inout_accessor<0, extent<0, 0, 0, 0, -1, 0>> out;
typedef make_param_list<out> param_list;
template <typename Evaluation>
GT_FUNCTION static void apply(Evaluation &eval) {
eval(out()) = eval(out(0, 0, -1));
}
};
struct call_shift_functor {
typedef inout_accessor<0, extent<0, 0, 0, 0, -1, 0>> out;
typedef make_param_list<out> param_list;
template <typename Evaluation>
GT_FUNCTION static void apply(Evaluation &eval, axis<1>::full_interval::modify<1, 0>) {
call_proc<shift_functor>::with(eval, out());
}
template <typename Evaluation>
GT_FUNCTION static void apply(Evaluation &, axis<1>::full_interval::first_level) {}
};
TEST_F(expandable_parameters, call_shift) {
auto expected = [&](double value) { return env_t::make_storage([=](int_t, int_t, int_t) { return value; }); };
auto in = [&](double value) {
return env_t::make_storage([=](int_t, int_t, int_t k) { return k == 0 ? value : -1; });
};
storages_t actual = {in(14), in(15), in(16), in(17), in(18)};
run_computation([](auto x) { return execute_forward().stage(call_shift_functor(), x); }, actual);
verify({expected(14), expected(15), expected(16), expected(17), expected(18)}, actual);
}
TEST_F(expandable_parameters, caches) {
storages_t out = {env_t::make_storage(1.),
env_t::make_storage(2.),
env_t::make_storage(3.),
env_t::make_storage(4.),
env_t::make_storage(5.)};
auto in = env_t::make_storage(42.);
run_computation(
[](auto in, auto out) {
GT_DECLARE_TMP(double, tmp);
return execute_parallel().ij_cached(tmp).stage(copy_functor(), tmp, in).stage(copy_functor(), out, tmp);
},
in,
out);
verify({in, in, in, in, in}, out);
}
} // namespace
|