File: TestUtils.pm

package info (click to toggle)
grinder 0.4.5-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 944 kB
  • sloc: perl: 7,796; xml: 368; makefile: 41; python: 27
file content (468 lines) | stat: -rw-r--r-- 13,582 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
package t::TestUtils;


use strict;
use warnings;
use POSIX qw( floor ceil );
use Test::More;
use File::Spec::Functions;
use List::Util qw( min max );

use vars qw{@ISA @EXPORT};
BEGIN {
   @ISA     = 'Exporter';
   @EXPORT  = qw{
      PI
      round
      between_ok
      data
      get_references
      get_chars
      stats
      hist
      uniform
      normal
      corr_coeff
      write_data
      can_rfit
      rfit_msg
      error_positions
      test_normal_dist
      test_linear_dist
      test_uniform_dist      
   };
}

our $can_rfit;


#------------------------------------------------------------------------------#


# The Pi mathematical constant
use constant PI => 4 * atan2(1, 1);

sub round {
  # Round the number given as argument
  return int(shift() + 0.5);
}

sub between_ok {
   # Test that a value is in the given range (inclusive)
   my ($value, $min, $max) = @_;
   cmp_ok( $value, '>=', $min ) and
      cmp_ok( $value, '<=', $max ) or
      diag("Got $value but the allowed range was [$min, $max]");
}


sub data {
   # Get the complete filename of a test data file
   return catfile('t', 'data', @_);
}


sub get_references {
   # Get the number of references that a read comes from
   my ($read) = @_;
   my $desc = $read->desc;
   $desc =~ m/reference=(\S+)/;
   my $refs = $1;
   my @refs = split(',', $refs);
   return @refs;
}


sub get_chars {
   # Return a hashref where the keys are the characters seen in the specified
   # string
   my ($string) = @_;
   my %chars;
   for my $pos (0 .. length($string)-1) {
      my $char = substr $string, $pos, 1;
      $chars{$char} = undef;
   }
   my @chars = keys %chars;
   return \%chars;
}


sub stats {
   # Calculates min, max, mean, stddev
   my ($vals) = @_;
   my ($min, $max, $mean, $sum, $sqsum, $stddev) = (1E99, 0, 0, 0, 0, 0);
   my $num = scalar @$vals;
   for my $val (@$vals) {
      $min = $val if $val < $min;
      $max = $val if $val > $max;
      $sum += $val;
      $sqsum += $val**2
   }
   $mean = $sum / $num;
   $stddev = sqrt( $sqsum / $num - $mean**2 );
   return $min, $max, $mean, $stddev;
}


sub hist {
   # Count the number of occurence of each integer:
   # E.g. given the arrayref:
   #    [ 1, 1, 1, 3, 3, 4 ]
   # Return the arrayref:
   #    [ 3, 0, 2, 4 ]
   # The min and the max of the range to consider can be given as an option
   my ($data, $min, $max) = @_;
   if (not defined $data) {
      die "Error: no data provided to hist()\n";
   }
   my %hash;
   for my $val (@$data) {
      $hash{$val}++;
   }
   $min = min(@$data) if not defined $min;
   $max = max(@$data) if not defined $max;
   my @y_data;
   for my $x ($min .. $max) {
      push @y_data, $hash{$x} || 0;
   }
   return \@y_data;
}


sub normal {
   # Evaluate the normal function in the given integer range
   my ($x_min, $x_max, $mean, $variance, $num) = @_;
   my @ys;
   for my $x ($x_min .. $x_max) {
      my $proba = 1 / sqrt(2 * PI * $variance) * exp( - ($x - $mean)**2 / (2 * $variance));
      my $y = $proba * $num;
      push @ys, $y;
   }
   return \@ys;
}


sub uniform {
   # Evaluate the uniform function in the given integer range
   my ($x_min, $x_max, $min, $max, $num) = @_;
   my @ys;
   my $width = $max - $min + 1;
   for my $x ($x_min .. $x_max) {
      my $y;
      if ( ($x >= $min) and ($x <= $max) ) {
         $y = $num / $width;
      } else {
         $y = 0;
      }
      push @ys, $y;
   }
   return \@ys;
}


sub corr_coeff {
   # The correlation coefficient R2 is
   #    R2 = 1 - ( SSerr / SStot )
   # where
   #    SSerr = sum( (y - f)**2 )
   # and
   #    SStot = sum( (y - mean)**2 )
   my ($y, $f, $mean) = @_;
   my $SSerr = 0;
   my $SStot = 0;
   for my $i ( 0 .. scalar @$y - 1 ) {
      #print "  ".($i+1)."  ".$$y[$i]."  ".$$f[$i]."\n";
      $SSerr += ($$y[$i] - $$f[$i])**2;
      $SStot += ($$y[$i] - $mean)**2;
   }
   my $R2 = 1 - ($SSerr / $SStot);
   return $R2;
}


sub write_data {
   # Write a data series (array reference) to a file with the specified name, or
   # 'data.txt' by default
   my ($data, $filename) = @_;
   $filename = 'data.txt' if not defined $filename;
   open my $out, '>', $filename or die "Error: Could not write file $filename\n$!\n";
   for my $datum (@$data) {
      print $out "$datum\n";
   }
   close $out;
   return $filename;
}


sub can_rfit {
   # Determine if a system can run the fitdistrplus R module through the
   # Statistics::R Perl interface. Load Statistics::R if it can and return 1.
   # Return 0 otherwise.
   if (not defined $can_rfit) {
      eval {
         require Statistics::R;
         my $R = Statistics::R->new();
         my $ret = $R->run(q`library(fitdistrplus)`);
         $R->stop();
      };
      if ($@) {
         $can_rfit = 0;
         my $msg = "Note: The Statistics::R module for Perl, R (R-Project) ".
            "or the fitdistrplus module for R could not be found on this system.".
            " Some tests will be skipped...\n";
         warn $msg;
      } else {
         $can_rfit = 1;
      }
   }
   return $can_rfit;
}


sub rfit_msg {
   return "fitdistrplus not available...";
}


sub error_positions {
   my ($read) = @_;
   my ($err_str) = ($read->desc =~ /errors=(\S+)/);
   my @error_positions;
   if (defined $err_str) {
      for my $error (split ',', $err_str) {
         my ($pos, $type, $res) = ($error =~ m/(\d+)([%+-])([a-z]*)/i);
         push @error_positions, $pos;
      }
   }
   return @error_positions;
}


sub test_linear_dist {
   # Test that the datapoints provided follow a linear distribution
   my ($values, $want_min, $want_max, $want_slope) = @_;

   my ($min, $max, $ratio_lo, $ratio_hi, $slope, $chisqpvalue, $chisqtest) =
      fit_linear($values);

   is $want_min, $min, 'fitdist() linear';
   is $want_max, $max;

   between_ok( 2, $ratio_lo, $ratio_hi );
 
   between_ok( $slope, (1 - 0.05) * $want_slope, (1 + 0.05) * $want_slope ); # Allow a 5% standard deviation

   is( $chisqtest, 'not rejected', 'Chi square test') or
      diag("p-value was: $chisqpvalue");

   return 1;
}


sub test_uniform_dist {
   # Test that the integer series provided follow a uniform distribution with the 
   # specified minimum and maximum. Note that you probably need over 30-100
   # values for the statistical test to work!
   my ($values, $want_min, $want_max) = @_;

   my ($min_lo, $min_hi, $max_lo, $max_hi, $chisqpvalue, $chisqtest) =
      fit_uniform($values, $want_min, $want_max);

   # Need to be more lenient since fitdistrplus is not too good with integers
   #between_ok( $want_min, $min_lo, $min_hi );
   #between_ok( $want_max, $max_lo, $max_hi );
   between_ok( round($want_min), floor($min_lo), ceil($min_hi) );
   between_ok( round($want_max), floor($max_lo), ceil($max_hi) );

   is( $chisqtest, 'not rejected', 'Chi square test') or
      diag("p-value was: $chisqpvalue");

   return 1;
}


sub test_normal_dist {
   # Test that the integer series provided follow a normal distribution with the 
   # specified mean and standard deviation. Note that you probably need over
   # 30-100 values for the statistical test to work!
   my ($values, $want_mean, $want_sd, $filename) = @_;

   my ($mean_lo, $mean_hi, $sd_lo, $sd_hi, $chisqpvalue, $chisqtest) =
      fit_normal($values, $want_mean, $want_sd);

   # Need to be more lenient since fitdistrplus is not too good with integers
   #between_ok( $want_mean, $mean_lo, $mean_hi );
   #between_ok( $want_sd  , $sd_lo  , $sd_hi   );
   between_ok( round($want_mean), floor($mean_lo), ceil($mean_hi) );
   between_ok( round($want_sd  ), floor($sd_lo  ), ceil($sd_hi  ) );

   is( $chisqtest, 'not rejected', 'Chi square test') or 
      diag("p-value was: $chisqpvalue");

   return 1;
}


#------------------------------------------------------------------------------#


my $niter = 30; # number of iterations to fit the distributions


sub fit_linear {
   my ($values) = @_;

   # Fit a linear distribution. Since R does not have a linear distribution, use
   # the beta distribution:
   #    when beta shape1=1 & shape2=2, distribution is linearly decreasing (slope=-2)
   #    when beta shape1=2 & shape2=1, distribution is linearly increasing (slope=2)

   # Find min and max of series
   my $min = min(@$values);
   my $max = max(@$values);

   # Rescale values between in 0 and 1 instead of min and max
   my $rescaled_values;
   if ( ($min == 0) and ($max == 1) ) {
      $rescaled_values = $values;
   } else {
      for my $value (@$values) {
         push @$rescaled_values, ($value - $min) / ($max - $min);
      }
   }

   # Now we can run fit_beta()
   my ($shape1_lo, $shape1_hi, $shape2_lo, $shape2_hi, $chisqpvalue, $chisqtest)
      = fit_beta($values, 2, 1, $min, $max);

   my $ratio_hi = $shape1_hi / $shape2_lo;
   my $ratio_lo = $shape2_hi / $shape1_lo;

   ####
   # Calculate the slope
   my $slope = 2 / ($max - $min);
   ####

   ####
   #print "xmin = $min, xmax = $max\n";
   #print "$shape1_lo < shape1 < $shape1_hi\n";
   #print "$shape2_lo < shape2 < $shape2_hi\n";
   #print "$ratio_lo < ratio < $ratio_hi\n";
   #print "slope = $slope\n";
   #print "p-value = $chisqpvalue  ->  $chisqtest\n";
   ####

   return $min, $max, $ratio_lo, $ratio_hi, $slope, $chisqpvalue, $chisqtest;
}


sub fit_beta {
   # Try to fit a beta distribution to a series of data points using a maximum
   # goodness of fit method. Return the 95% confidence interval for the shape1
   # parameter, the shape2 parameter and the results of Chi square statistics.
   my ($values, $want_shape1, $want_shape2, $want_min, $want_max) = @_;
   my $break_num   = $want_max - $want_min;
   my $break_size  = 1 / $break_num;
   my $break_start = 0 - $break_size / 2;
   my $break_end   = 1 + $break_size / 2;
   my $start_p   = "start=list(shape1=$want_shape1, shape2=$want_shape2)";
   my $breaks_p  = "chisqbreaks=seq($break_start, $break_end, $break_size)";
   #my $fit_cmd   = "f  <- fitdist(x, distr='beta', method='mle', $start_p)";
   my $fit_cmd   = "f  <- fitdist(x, distr='beta', method='mge', gof='CvM', $start_p)";
   my $boot_cmd  = "fb <- bootdist(f, niter=$niter)";
   my $gof_cmd   = "g  <- gofstat(f, $breaks_p)";
   my $R = Statistics::R->new();
   $R->set('x', $values);
   $R->run('library(fitdistrplus)');
   $R->run($fit_cmd);
   $R->run($boot_cmd);
   $R->run($gof_cmd);
   my $shape1_lo   = $R->get('fb$CI[1,2]');
   my $shape1_hi   = $R->get('fb$CI[1,3]');
   my $shape2_lo   = $R->get('fb$CI[2,2]');
   my $shape2_hi   = $R->get('fb$CI[2,3]');
   my $chisqpvalue = $R->get('g$chisqpvalue');
   my $chisqtest   = test_result($chisqpvalue);
   $R->stop();
   return $shape1_lo, $shape1_hi, $shape2_lo, $shape2_hi, $chisqpvalue, $chisqtest;
}


sub fit_uniform {
   # Try to fit a uniform distribution to a series of integers using a maximum
   # goodness of fit method. Return the 95% confidence interval for the mean,
   # the standard deviation and the results of the Chi square statistics.
   my ($values, $want_min, $want_max) = @_;
   my $range_min = min(@$values) - 0.5;
   my $range_max = max(@$values) + 0.5;
   my $breaks_p  = "chisqbreaks=seq($range_min, $range_max)";
   my $start_p   = "start=list(min=$want_min, max=$want_max)";
   my $fit_cmd   = "f  <- fitdist(x, distr='unif', method='mge', gof='CvM', $start_p)";
   my $boot_cmd  = "fb <- bootdist(f, niter=$niter)";
   my $gof_cmd   = "g  <- gofstat(f, $breaks_p)";
   my $R = Statistics::R->new();
   $R->set('x', $values);
   $R->run('library(fitdistrplus)');
   $R->run($fit_cmd);
   $R->run($boot_cmd);
   $R->run($gof_cmd);
   my $min_lo      = $R->get('fb$CI[1,2]');
   my $min_hi      = $R->get('fb$CI[1,3]');
   my $max_lo      = $R->get('fb$CI[2,2]');
   my $max_hi      = $R->get('fb$CI[2,3]');
   my $chisqpvalue = $R->get('g$chisqpvalue');
   my $chisqtest   = test_result($chisqpvalue);
   $R->stop();
   return $min_lo, $min_hi, $max_lo, $max_hi, $chisqpvalue, $chisqtest;
}


sub fit_normal {
   # Try to fit a normal distribution to a series of integers using a maximum
   # likelihood method. Return the 95% confidence interval for the mean, the
   # standard deviation and the results of the Chi square statistics.
   my ($values, $want_mean, $want_sd) = @_;
   my $range_min = min(@$values) - 0.5;
   my $range_max = max(@$values) + 0.5;
   my $breaks_p  = "chisqbreaks=seq($range_min, $range_max)";
   my $start_p   = "start=list(mean=$want_mean, sd=$want_sd)";
   my $fit_cmd   = "f  <- fitdist(x, distr='norm', method='mle', $start_p)";
   my $boot_cmd  = "fb <- bootdist(f, niter=$niter)";
   my $gof_cmd   = "g  <- gofstat(f, $breaks_p)";
   my $R = Statistics::R->new();
   $R->set('x', $values);
   $R->run('library(fitdistrplus)');
   $R->run($fit_cmd);
   $R->run($boot_cmd);
   $R->run($gof_cmd);
   my $mean_lo     = $R->get('fb$CI[1,2]');
   my $mean_hi     = $R->get('fb$CI[1,3]');
   my $sd_lo       = $R->get('fb$CI[2,2]');
   my $sd_hi       = $R->get('fb$CI[2,3]');
   my $chisqpvalue = $R->get('g$chisqpvalue');
   my $chisqtest   = test_result($chisqpvalue);
   $R->stop();
   return $mean_lo, $mean_hi, $sd_lo, $sd_hi, $chisqpvalue, $chisqtest;
}


sub test_result {
   # Reject a statistical test if the p value is less than 0.05
   my ($p_value) = @_;
   my $test_result;
   if ( lc $p_value eq 'nan' ) {
      $p_value = 1; # probably a very large p value
   }
   my $thresh = 0.05;
   if ($p_value <= $thresh) {
      $test_result = 'rejected';
   } elsif ($p_value > $thresh) {
      $test_result = 'not rejected';
   } else {
      die "Error: '$p_value' is not a supported p-value\n";
   }
   return $test_result;
}


1;