1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
Averages and fluctuations
=========================
Formulae for averaging
----------------------
**Note:** this section was taken from ref \ :ref:`179 <refGunsteren94a>`.
When analyzing a MD trajectory averages :math:`\left<x\right>` and
fluctuations
.. math:: \left<(\Delta x)^2\right>^{{\frac{1}{2}}} ~=~ \left<[x-\left<x\right>]^2\right>^{{\frac{1}{2}}}
:label: eqnvar0
of a quantity :math:`x` are to be computed. The variance
:math:`\sigma_x` of a series of N\ :math:`_x` values, {:math:`x_i`}, can
be computed from
.. math:: \sigma_x~=~ \sum_{i=1}^{N_x} x_i^2 ~-~ \frac{1}{N_x}\left(\sum_{i=1}^{N_x}x_i\right)^2
:label: eqnvar1
Unfortunately this formula is numerically not very accurate, especially
when :math:`\sigma_x^{{\frac{1}{2}}}` is small compared to the values of
:math:`x_i`. The following (equivalent) expression is numerically more
accurate
.. math:: \sigma_x ~=~ \sum_{i=1}^{N_x} [x_i - \left<x\right>]^2
:label: eqnvar1equivalent
with
.. math:: \left<x\right> ~=~ \frac{1}{N_x} \sum_{i=1}^{N_x} x_i
:label: eqnvar2
Using :eq:`eqns. %s <eqnvar1>` and
:eq:`%s <eqnvar2>` one has to go through the series of
:math:`x_i` values twice, once to determine :math:`\left<x\right>` and
again to compute :math:`\sigma_x`, whereas
:eq:`eqn. %s <eqnvar0>` requires only one sequential scan of
the series {:math:`x_i`}. However, one may cast
:eq:`eqn. %s <eqnvar1>` in another form, containing partial
sums, which allows for a sequential update algorithm. Define the partial
sum
.. math:: X_{n,m} ~=~ \sum_{i=n}^{m} x_i
:label: eqnpartialsum
and the partial variance
.. math:: \sigma_{n,m} ~=~ \sum_{i=n}^{m} \left[x_i - \frac{X_{n,m}}{m-n+1}\right]^2
:label: eqnsigma
It can be shown that
.. math:: X_{n,m+k} ~=~ X_{n,m} + X_{m+1,m+k}
:label: eqnXpartial
and
.. math:: \begin{aligned}
\sigma_{n,m+k} &=& \sigma_{n,m} + \sigma_{m+1,m+k} + \left[~\frac {X_{n,m}}{m-n+1} - \frac{X_{n,m+k}}{m+k-n+1}~\right]^2~* \nonumber\\
&& ~\frac{(m-n+1)(m+k-n+1)}{k}
\end{aligned}
:label: eqnvarpartial
For :math:`n=1` one finds
.. math:: \sigma_{1,m+k} ~=~ \sigma_{1,m} + \sigma_{m+1,m+k}~+~
\left[~\frac{X_{1,m}}{m} - \frac{X_{1,m+k}}{m+k}~\right]^2~ \frac{m(m+k)}{k}
:label: eqnsig1
and for :math:`n=1` and :math:`k=1`
:eq:`eqn. %s <eqnvarpartial>` becomes
.. math:: \begin{aligned}
\sigma_{1,m+1} &=& \sigma_{1,m} +
\left[\frac{X_{1,m}}{m} - \frac{X_{1,m+1}}{m+1}\right]^2 m(m+1)\\
&=& \sigma_{1,m} +
\frac {[~X_{1,m} - m x_{m+1}~]^2}{m(m+1)}
\end{aligned}
:label: eqnsimplevar0
where we have used the relation
.. math:: X_{1,m+1} ~=~ X_{1,m} + x_{m+1}
:label: eqnsimplevar1
Using formulae :eq:`eqn. %s <eqnsimplevar0>` and
:eq:`eqn. %s <eqnsimplevar1>` the average
.. math:: \left<x\right> ~=~ \frac{X_{1,N_x}}{N_x}
:label: eqnfinalaverage
and the fluctuation
.. math:: \left<(\Delta x)^2\right>^{{\frac{1}{2}}} = \left[\frac {\sigma_{1,N_x}}{N_x}\right]^{{\frac{1}{2}}}
:label: eqnfinalfluctuation
can be obtained by one sweep through the data.
Implementation
--------------
In |Gromacs| the instantaneous energies :math:`E(m)` are stored in the
:ref:`energy file <edr>`, along with the values of :math:`\sigma_{1,m}` and
:math:`X_{1,m}`. Although the steps are counted from 0, for the energy
and fluctuations steps are counted from 1. This means that the equations
presented here are the ones that are implemented. We give somewhat
lengthy derivations in this section to simplify checking of code and
equations later on.
Part of a Simulation
~~~~~~~~~~~~~~~~~~~~
It is not uncommon to perform a simulation where the first part, *e.g.*
100 ps, is taken as equilibration. However, the averages and
fluctuations as printed in the :ref:`log file <log>` are computed over the whole
simulation. The equilibration time, which is now part of the simulation,
may in such a case invalidate the averages and fluctuations, because
these numbers are now dominated by the initial drift towards
equilibrium.
Using :eq:`eqns. %s <eqnXpartial>` and
:eq:`%s <eqnvarpartial>` the average and standard deviation
over part of the trajectory can be computed as:
.. math:: \begin{aligned}
X_{m+1,m+k} &=& X_{1,m+k} - X_{1,m} \\
\sigma_{m+1,m+k} &=& \sigma_{1,m+k}-\sigma_{1,m} - \left[~\frac{X_{1,m}}{m} - \frac{X_{1,m+k}}{m+k}~\right]^{2}~ \frac{m(m+k)}{k}\end{aligned}
:label: eqnaveragesimpart
or, more generally (with :math:`p \geq 1` and :math:`q \geq p`):
.. math:: \begin{aligned}
X_{p,q} &=& X_{1,q} - X_{1,p-1} \\
\sigma_{p,q} &=& \sigma_{1,q}-\sigma_{1,p-1} - \left[~\frac{X_{1,p-1}}{p-1} - \frac{X_{1,q}}{q}~\right]^{2}~ \frac{(p-1)q}{q-p+1}\end{aligned}
:label: eqnaveragesimpartgeneral
**Note** that implementation of this is not entirely trivial, since
energies are not stored every time step of the simulation. We therefore
have to construct :math:`X_{1,p-1}` and :math:`\sigma_{1,p-1}` from the
information at time :math:`p` using :eq:`eqns. %s <eqnsimplevar0>` and
:eq:`%s <eqnsimplevar1>`:
.. math:: \begin{aligned}
X_{1,p-1} &=& X_{1,p} - x_p \\
\sigma_{1,p-1} &=& \sigma_{1,p} - \frac {[~X_{1,p-1} - (p-1) x_{p}~]^2}{(p-1)p}\end{aligned}
:label: eqnfinalaveragesimpartnote
Combining two simulations
~~~~~~~~~~~~~~~~~~~~~~~~~
Another frequently occurring problem is, that the fluctuations of two
simulations must be combined. Consider the following example: we have
two simulations (A) of :math:`n` and (B) of :math:`m` steps, in which
the second simulation is a continuation of the first. However, the
second simulation starts numbering from 1 instead of from :math:`n+1`.
For the partial sum this is no problem, we have to add :math:`X_{1,n}^A`
from run A:
.. math:: X_{1,n+m}^{AB} ~=~ X_{1,n}^A + X_{1,m}^B
:label: eqnpscomb
When we want to compute the partial variance from the two components we
have to make a correction :math:`\Delta\sigma`:
.. math:: \sigma_{1,n+m}^{AB} ~=~ \sigma_{1,n}^A + \sigma_{1,m}^B +\Delta\sigma
:label: eqnscombcorr
if we define :math:`x_i^{AB}` as the combined and renumbered set of
data points we can write:
.. math:: \sigma_{1,n+m}^{AB} ~=~ \sum_{i=1}^{n+m} \left[x_i^{AB} - \frac{X_{1,n+m}^{AB}}{n+m}\right]^2
:label: eqnpscombpoints
and thus
.. math:: \sum_{i=1}^{n+m} \left[x_i^{AB} - \frac{X_{1,n+m}^{AB}}{n+m}\right]^2 ~=~
\sum_{i=1}^{n} \left[x_i^{A} - \frac{X_{1,n}^{A}}{n}\right]^2 +
\sum_{i=1}^{m} \left[x_i^{B} - \frac{X_{1,m}^{B}}{m}\right]^2 +\Delta\sigma
:label: eqnpscombresult
or
.. math:: \begin{aligned}
\sum_{i=1}^{n+m} \left[(x_i^{AB})^2 - 2 x_i^{AB}\frac{X^{AB}_{1,n+m}}{n+m} + \left(\frac{X^{AB}_{1,n+m}}{n+m}\right)^2 \right] &-& \nonumber \\
\sum_{i=1}^{n} \left[(x_i^{A})^2 - 2 x_i^{A}\frac{X^A_{1,n}}{n} + \left(\frac{X^A_{1,n}}{n}\right)^2 \right] &-& \nonumber \\
\sum_{i=1}^{m} \left[(x_i^{B})^2 - 2 x_i^{B}\frac{X^B_{1,m}}{m} + \left(\frac{X^B_{1,m}}{m}\right)^2 \right] &=& \Delta\sigma\end{aligned}
:label: eqnpscombresult2
all the :math:`x_i^2` terms drop out, and the terms independent of the
summation counter :math:`i` can be simplified:
.. math:: \begin{aligned}
\frac{\left(X^{AB}_{1,n+m}\right)^2}{n+m} \,-\,
\frac{\left(X^A_{1,n}\right)^2}{n} \,-\,
\frac{\left(X^B_{1,m}\right)^2}{m} &-& \nonumber \\
2\,\frac{X^{AB}_{1,n+m}}{n+m}\sum_{i=1}^{n+m}x_i^{AB} \,+\,
2\,\frac{X^{A}_{1,n}}{n}\sum_{i=1}^{n}x_i^{A} \,+\,
2\,\frac{X^{B}_{1,m}}{m}\sum_{i=1}^{m}x_i^{B} &=& \Delta\sigma\end{aligned}
:label: eqnpscombsimp
we recognize the three partial sums on the second line and use
:eq:`eqn. %s <eqnpscomb>` to obtain:
.. math:: \Delta\sigma ~=~ \frac{\left(mX^A_{1,n} - nX^B_{1,m}\right)^2}{nm(n+m)}
:label: eqnpscombused
if we check this by inserting :math:`m=1` we get back
:eq:`eqn. %s <eqnsimplevar0>`
Summing energy terms
~~~~~~~~~~~~~~~~~~~~
The :ref:`gmx energy <gmx energy>` program
can also sum energy terms into one, *e.g.* potential + kinetic = total.
For the partial averages this is again easy if we have :math:`S` energy
components :math:`s`:
.. math:: X_{m,n}^S ~=~ \sum_{i=m}^n \sum_{s=1}^S x_i^s ~=~ \sum_{s=1}^S \sum_{i=m}^n x_i^s ~=~ \sum_{s=1}^S X_{m,n}^s
:label: eqnsumterms
For the fluctuations it is less trivial again, considering for example
that the fluctuation in potential and kinetic energy should cancel.
Nevertheless we can try the same approach as before by writing:
.. math:: \sigma_{m,n}^S ~=~ \sum_{s=1}^S \sigma_{m,n}^s + \Delta\sigma
:label: eqnsigmatermsfluct
if we fill in :eq:`eqn. %s <eqnsigma>`:
.. math:: \sum_{i=m}^n \left[\left(\sum_{s=1}^S x_i^s\right) - \frac{X_{m,n}^S}{m-n+1}\right]^2 ~=~
\sum_{s=1}^S \sum_{i=m}^n \left[\left(x_i^s\right) - \frac{X_{m,n}^s}{m-n+1}\right]^2 + \Delta\sigma
:label: eqnsigmaterms
which we can expand to:
.. math:: \begin{aligned}
&~&\sum_{i=m}^n \left[\sum_{s=1}^S (x_i^s)^2 + \left(\frac{X_{m,n}^S}{m-n+1}\right)^2 -2\left(\frac{X_{m,n}^S}{m-n+1}\sum_{s=1}^S x_i^s + \sum_{s=1}^S \sum_{s'=s+1}^S x_i^s x_i^{s'} \right)\right] \nonumber \\
&-&\sum_{s=1}^S \sum_{i=m}^n \left[(x_i^s)^2 - 2\,\frac{X_{m,n}^s}{m-n+1}\,x_i^s + \left(\frac{X_{m,n}^s}{m-n+1}\right)^2\right] ~=~\Delta\sigma \end{aligned}
:label: eqnsimtermsexpanded
the terms with :math:`(x_i^s)^2` cancel, so that we can simplify to:
.. math:: \begin{aligned}
&~&\frac{\left(X_{m,n}^S\right)^2}{m-n+1} -2 \frac{X_{m,n}^S}{m-n+1}\sum_{i=m}^n\sum_{s=1}^S x_i^s -2\sum_{i=m}^n\sum_{s=1}^S \sum_{s'=s+1}^S x_i^s x_i^{s'}\, - \nonumber \\
&~&\sum_{s=1}^S \sum_{i=m}^n \left[- 2\,\frac{X_{m,n}^s}{m-n+1}\,x_i^s + \left(\frac{X_{m,n}^s}{m-n+1}\right)^2\right] ~=~\Delta\sigma \end{aligned}
:label: eqnsigmatermssimplefied
or
.. math:: -\frac{\left(X_{m,n}^S\right)^2}{m-n+1} -2\sum_{i=m}^n\sum_{s=1}^S \sum_{s'=s+1}^S x_i^s x_i^{s'}\, + \sum_{s=1}^S \frac{\left(X_{m,n}^s\right)^2}{m-n+1} ~=~\Delta\sigma
:label: eqnsigmatermsalternative
If we now expand the first term using
:eq:`eqn. %s <eqnsumterms>` we obtain:
.. math:: -\frac{\left(\sum_{s=1}^SX_{m,n}^s\right)^2}{m-n+1} -2\sum_{i=m}^n\sum_{s=1}^S \sum_{s'=s+1}^S x_i^s x_i^{s'}\, + \sum_{s=1}^S \frac{\left(X_{m,n}^s\right)^2}{m-n+1} ~=~\Delta\sigma
:label: eqnsigmatermsfirstexpand
which we can reformulate to:
.. math:: -2\left[\sum_{s=1}^S \sum_{s'=s+1}^S X_{m,n}^s X_{m,n}^{s'}\,+\sum_{i=m}^n\sum_{s=1}^S \sum_{s'=s+1}^S x_i^s x_i^{s'}\right] ~=~\Delta\sigma
:label: eqnsigmatermsreformed
or
.. math:: -2\left[\sum_{s=1}^S X_{m,n}^s \sum_{s'=s+1}^S X_{m,n}^{s'}\,+\,\sum_{s=1}^S \sum_{i=m}^nx_i^s \sum_{s'=s+1}^S x_i^{s'}\right] ~=~\Delta\sigma
:label: eqnsigmatermsreformedalternative
which gives
.. math:: -2\sum_{s=1}^S \left[X_{m,n}^s \sum_{s'=s+1}^S \sum_{i=m}^n x_i^{s'}\,+\,\sum_{i=m}^n x_i^s \sum_{s'=s+1}^S x_i^{s'}\right] ~=~\Delta\sigma
:label: eqnsigmatermsfinal
Since we need all data points :math:`i` to evaluate this, in general
this is not possible. We can then make an estimate of
:math:`\sigma_{m,n}^S` using only the data points that are available
using the left hand side of :eq:`eqn. %s <eqnsigmaterms>`.
While the average can be computed using all time steps in the
simulation, the accuracy of the fluctuations is thus limited by the
frequency with which energies are saved. Since this can be easily done
with a program such as ``xmgr`` this is not
built-in in |Gromacs|.
.. raw:: latex
\clearpage
|