1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
|
File formats
============
.. todo:: in future patch: update for accuracy, organize better, improve formatting
Summary of file formats
^^^^^^^^^^^^^^^^^^^^^^^
Parameter files
---------------
:ref:`mdp`
run parameters, input for :ref:`gmx grompp` and :ref:`gmx convert-tpr`
:ref:`m2p`
input for :ref:`gmx xpm2ps`
.. _gmx-structure-files:
Structure files
---------------
:ref:`gro`
|Gromacs| format
:ref:`g96`
GROMOS-96 format
:ref:`pdb`
brookhaven Protein DataBank format
**Structure+mass(db):** :ref:`tpr`, :ref:`gro`, :ref:`g96`, or :ref:`pdb`
Structure and mass input for analysis tools.
When gro or pdb is used approximate masses will be read from the mass database.
Topology files
--------------
:ref:`top`
system topology (ascii)
:ref:`itp`
include topology (ascii)
:ref:`rtp`
residue topology (ascii)
:ref:`ndx`
index file (ascii)
:ref:`n2t`
atom naming definition (ascii)
:ref:`atp`
atom type library (ascii)
:ref:`r2b`
residue to building block mapping (ascii)
:ref:`arn`
atom renaming database (ascii)
:ref:`hdb`
hydrogen atom database (ascii)
:ref:`vsd`
virtual site database (ascii)
:ref:`tdb`
termini database (ascii)
Run Input files
---------------
:ref:`tpr`
system topology, parameters, coordinates and velocities (binary, portable)
Trajectory files
----------------
:ref:`tng`
Any kind of data (compressed, portable, any precision)
:ref:`trr`
x, v and f (binary, full precision, portable)
:ref:`xtc`
x only (compressed, portable, any precision)
:ref:`gro`
x and v (ascii, any precision)
:ref:`g96`
x only (ascii, fixed high precision)
:ref:`pdb`
x only (ascii, reduced precision)
**Formats for full-precision data:**
:ref:`tng` or :ref:`trr`
**Generic trajectory formats:**
:ref:`tng`, :ref:`xtc`, :ref:`trr`, :ref:`gro`, :ref:`g96`, or :ref:`pdb`
Energy files
------------
:ref:`ene`
energies, temperature, pressure, box size, density and virials (binary)
:ref:`edr`
energies, temperature, pressure, box size, density and virials (binary, portable)
**Generic energy formats:**
:ref:`edr` or :ref:`ene`
Other files
-----------
:ref:`dat`
generic, preferred for input
:ref:`edi`
essential dynamics constraints input for :ref:`gmx mdrun`
:ref:`eps`
Encapsulated Postscript
:ref:`log`
log file
:ref:`map`
colormap input for :ref:`gmx do_dssp`
:ref:`mtx`
binary matrix data
:ref:`out`
generic, preferred for output
:ref:`tex`
LaTeX input
:ref:`xpm`
ascii matrix data, use :ref:`gmx xpm2ps` to convert to :ref:`eps`
:ref:`xvg`
xvgr input
File format details
^^^^^^^^^^^^^^^^^^^
.. _atp:
atp
---
The atp file contains general information about atom types, like the atom
number and the mass in atomic mass units.
.. _arn:
arn
---
The arn file allows the renaming of atoms from their force field names to the names
as defined by IUPAC/PDB, to allow easier visualization and identification.
.. _cpt:
cpt
---
The cpt file extension stands for portable checkpoint file.
The complete state of the simulation is stored in the checkpoint file,
including extended thermostat/barostat variables, random number states
and NMR time averaged data.
With domain decomposition also the some decomposition setup information
is stored.
See also :ref:`gmx mdrun`.
.. _dat:
dat
---
Files with the dat file extension contain generic input or output.
As it is not possible
to categorize all data file formats, |Gromacs| has a generic file format called
dat of which no format is given.
.. _dlg:
dlg
---
The dlg file format is used as input for the :ref:`gmx view`
trajectory viewer. These files are not meant to be altered by the end user.
Sample
++++++
::
grid 39 18 {
group "Bond Options" 1 1 16 9 {
radiobuttons { " Thin Bonds" " Fat Bonds" " Very Fat Bonds" " Spheres" }
"bonds" "Ok" " F" "help bonds"
}
group "Other Options" 18 1 20 13 {
checkbox " Show Hydrogens" "" "" "FALSE" "help opts"
checkbox " Draw plus for atoms" "" "" "TRUE" "help opts"
checkbox " Show Box" "" "" "TRUE" "help opts"
checkbox " Remove PBC" "" "" "FALSE" "help opts"
checkbox " Depth Cueing" "" "" "TRUE" "help opts"
edittext "Skip frames: " "" "" "0" "help opts"
}
simple 1 15 37 2 {
defbutton "Ok" "Ok" "Ok" "Ok" "help bonds"
}
}
.. _edi:
edi
---
Files with the edi file extension contain information for :ref:`gmx mdrun`
to run Molecular Dynamics with Essential Dynamics constraints.
It used to be possible to generate those through the options
provided in the `WHAT IF <http://swift.cmbi.ru.nl/whatif/>`_ program.
.. WEDSAM and ESSDYN seem to have vanished from WhatIf and the web
These files can be generated by the program <tt>WEDSAM</tt> which uses
output from the programs in the <tt>ESSDYN</tt> menu of the
<A HREF="http://www.sander.embl-heidelberg.de/whatif/">WHAT IF</A> program.
.. _edr:
edr
---
The edr file extension stands for portable energy file.
The energies are stored using the xdr protocol.
See also :ref:`gmx energy`.
.. _ene:
ene
---
The ene file extension stands for binary energy file. It holds the
energies as generated during your :ref:`gmx mdrun`.
The file can be transformed to a portable energy file (portable
across hardware platforms), the :ref:`edr` file using the program
:ref:`gmx eneconv`.
See also :ref:`gmx energy`.
.. _eps:
eps
---
The eps file format is not a special |Gromacs| format, but just a
variant of the standard PostScript(tm). A sample eps file as
generated by the :ref:`gmx xpm2ps` program is
included below. It shows the secondary structure of a peptide as a function
of time.
.. image:: plots/plotje.*
:alt: hallo
.. _g96:
g96
---
A file with the g96 extension can be a GROMOS-96 initial/final
configuration file or a coordinate trajectory file or a combination of both.
The file is fixed format, all floats are written as 15.9 (files can get huge).
|Gromacs| supports the following data blocks in the given order:
* Header block:
- ``TITLE`` (mandatory)
* Frame blocks:
- ``TIMESTEP`` (optional)
- ``POSITION/POSITIONRED`` (mandatory)
- ``VELOCITY/VELOCITYRED`` (optional)
- ``BOX`` (optional)
See the GROMOS-96 manual for a complete description of the blocks.
Note that all |Gromacs| programs can read compressed or g-zipped files.
.. _gro:
gro
---
Files with the gro file extension contain a molecular structure in
Gromos87 format. gro files can be used as trajectory by simply
concatenating files. An attempt will be made to read a time value from
the title string in each frame, which should be preceded by
'``t=``', as in the sample below.
A sample piece is included below::
MD of 2 waters, t= 0.0
6
1WATER OW1 1 0.126 1.624 1.679 0.1227 -0.0580 0.0434
1WATER HW2 2 0.190 1.661 1.747 0.8085 0.3191 -0.7791
1WATER HW3 3 0.177 1.568 1.613 -0.9045 -2.6469 1.3180
2WATER OW1 4 1.275 0.053 0.622 0.2519 0.3140 -0.1734
2WATER HW2 5 1.337 0.002 0.680 -1.0641 -1.1349 0.0257
2WATER HW3 6 1.326 0.120 0.568 1.9427 -0.8216 -0.0244
1.82060 1.82060 1.82060
Lines contain the following information (top to bottom):
* title string (free format string, optional time in ps after '``t=``')
* number of atoms (free format integer)
* one line for each atom (fixed format, see below)
* box vectors (free format, space separated reals), values:
v1(x) v2(y) v3(z) v1(y) v1(z) v2(x) v2(z) v3(x) v3(y),
the last 6 values may be omitted (they will be set to zero).
|Gromacs| only supports boxes with v1(y)=v1(z)=v2(z)=0.
This format is fixed, ie. all columns are in a fixed
position. Optionally (for now only yet with trjconv) you can write gro
files with any number of decimal places, the format will then be
``n+5`` positions with ``n`` decimal places (``n+1``
for velocities) in stead of ``8`` with ``3`` (with
``4`` for velocities). Upon reading, the precision will be
inferred from the distance between the decimal points (which will be
``n+5``). Columns contain the following information (from left to
right):
* residue number (5 positions, integer)
* residue name (5 characters)
* atom name (5 characters)
* atom number (5 positions, integer)
* position (in nm, x y z in 3 columns, each 8 positions with 3 decimal places)
* velocity (in nm/ps (or km/s), x y z in 3 columns, each 8 positions with 4 decimal places)
Note that separate molecules or ions (e.g. water or Cl-) are regarded
as residues. If you want to write such a file in your own program
without using the |Gromacs| libraries you can use the following formats:
C format
``"%5d%-5s%5s%5d%8.3f%8.3f%8.3f%8.4f%8.4f%8.4f"``
Fortran format
``(i5,2a5,i5,3f8.3,3f8.4)``
Pascal format
This is left as an exercise for the user
Note that this is the format for writing, as in the above example
fields may be written without spaces, and therefore can not be read
with the same format statement in C.
.. _hdb:
hdb
---
The hdb file extension stands for hydrogen database
Such a file is needed by :ref:`gmx pdb2gmx`
when building hydrogen atoms that were either originally missing, or that
were removed with ``-ignh``.
.. _itp:
itp
---
The itp file extension stands for include topology. These files are included in
topology files (with the :ref:`top` extension).
.. _log:
log
---
Logfiles are generated by some |Gromacs| programs and are usually in
human-readable format. Use ``more logfile``.
.. _m2p:
m2p
---
The m2p file format contains input options for the
:ref:`gmx xpm2ps` program. All of these options
are very easy to comprehend when you look at the PosScript(tm) output
from :ref:`gmx xpm2ps`.
::
; Command line options of xpm2ps override the parameters in this file
black&white = no ; Obsolete
titlefont = Times-Roman ; A PostScript Font
titlefontsize = 20 ; Font size (pt)
legend = yes ; Show the legend
legendfont = Times-Roman ; A PostScript Font
legendlabel = ; Used when there is none in the .xpm
legend2label = ; Used when merging two xpm's
legendfontsize = 14 ; Font size (pt)
xbox = 2.0 ; x-size of a matrix element
ybox = 2.0 ; y-size of a matrix element
matrixspacing = 20.0 ; Space between 2 matrices
xoffset = 0.0 ; Between matrix and bounding box
yoffset = 0.0 ; Between matrix and bounding box
x-major = 20 ; Major ticks on x axis every .. frames
x-minor = 5 ; Id. Minor ticks
x-firstmajor = 0 ; First frame for major tick
x-majorat0 = no ; Major tick at first frame
x-majorticklen = 8.0 ; x-majorticklength
x-minorticklen = 4.0 ; x-minorticklength
x-label = ; Used when there is none in the .xpm
x-fontsize = 16 ; Font size (pt)
x-font = Times-Roman ; A PostScript Font
x-tickfontsize = 10 ; Font size (pt)
x-tickfont = Helvetica ; A PostScript Font
y-major = 20
y-minor = 5
y-firstmajor = 0
y-majorat0 = no
y-majorticklen = 8.0
y-minorticklen = 4.0
y-label =
y-fontsize = 16
y-font = Times-Roman
y-tickfontsize = 10
y-tickfont = Helvetica
.. _map:
map
---
This file maps matrix data to RGB values which is used by the
:ref:`gmx do_dssp` program.
The format of this file is as follow: first line number of elements
in the colormap. Then for each line: The first character is
a code for the secondary structure type.
Then comes a string for use in the legend of the plot and then the
R (red) G (green) and B (blue) values.
In this case the colors are
(in order of appearance): white, red, black, cyan, yellow, blue, magenta, orange.
::
8
~ Coil 1.0 1.0 1.0
E B-Sheet 1.0 0.0 0.0
B B-Bridge 0.0 0.0 0.0
S Bend 0.0 0.8 0.8
T Turn 1.0 1.0 0.0
H A-Helix 0.0 0.0 1.0
G 3-Helix 1.0 0.0 1.0
I 5-Helix 1.0 0.6 0.0
.. _mdp:
mdp
---
See the user guide for a detailed description of the options.
Below is a sample mdp file.
The ordering of the items is not important, but if you enter the same
thing twice, the **last** is used (:ref:`gmx grompp` gives you a note when
overriding values). Dashes and underscores on the left hand side are ignored.
The values of the options are values for a 1 nanosecond
MD run of a protein in a box of water.
**Note:** The parameters chosen (*e.g.,* short-range cutoffs) depend on the
force field being used.
::
integrator = md
dt = 0.002
nsteps = 500000
nstlog = 5000
nstenergy = 5000
nstxout-compressed = 5000
continuation = yes
constraints = all-bonds
constraint-algorithm = lincs
cutoff-scheme = Verlet
coulombtype = PME
rcoulomb = 1.0
vdwtype = Cut-off
rvdw = 1.0
DispCorr = EnerPres
tcoupl = V-rescale
tc-grps = Protein SOL
tau-t = 0.1 0.1
ref-t = 300 300
pcoupl = Parrinello-Rahman
tau-p = 2.0
compressibility = 4.5e-5
ref-p = 1.0
With this input :ref:`gmx grompp` will produce a commented file with the default name
``mdout.mdp``. That file will contain the above options, as well as all other
options not explicitly set, showing their default values.
.. _mtx:
mtx
---
Files with the mtx file extension contain a matrix.
The file format is identical to the :ref:`trr` format.
Currently this file format is only used for hessian matrices,
which are produced with :ref:`gmx mdrun` and read by
:ref:`gmx nmeig`.
.. _ndx:
ndx
---
The |Gromacs| index file (usually called index.ndx) contains some
user definable sets of atoms. The file can be read by
most analysis programs, by the graphics program
(:ref:`gmx view`)
and by the preprocessor (:ref:`gmx grompp`).
Most of these programs create default index groups when no index
file is supplied, so you only need to make an index file when you need special
groups.
First the group name is written between square brackets.
The following atom numbers may be spread out over as many lines as you like.
The atom numbering starts at 1.
An example file is here:
::
[ Oxygen ]
1 4 7
[ Hydrogen ]
2 3 5 6
8 9
There are two groups, and total nine atoms. The first group
**Oxygen** has 3 elements.
The second group **Hydrogen** has 6 elements.
An index file generation tool is available:
:ref:`gmx make_ndx`.
.. _n2t:
n2t
---
This |Gromacs| file can be used to perform primitive translations between
atom names found in structure files and the corresponding atom types.
This is mostly useful for using utilities such as :ref:`gmx x2top`, but users
should be aware that the knowledge in this file is extremely limited.
An example file (``share/top/gromos53a5.ff/atomname2type.n2t``) is here:
::
H H 0.408 1.008 1 O 0.1
O OA -0.674 15.9994 2 C 0.14 H 0.1
C CH3 0.000 15.035 1 C 0.15
C CH0 0.266 12.011 4 C 0.15 C 0.15 C 0.15 O 0.14
A short description of the file format follows:
* Column 1: Elemental symbol of the atom/first character in the atom name.
* Column 2: The atom type to be assigned.
* Column 3: The charge to be assigned.
* Column 4: The mass of the atom.
* Column 5: The number N of other atoms to which this atom is bonded.
The number of fields that follow are related to this number;
for each atom, an elemental symbol and the reference distance for its bond length.
* Columns 6-onward: The elemental symbols and reference bond lengths for N connections
(column 5) to the atom being assigned parameters (column 1). The reference bond
lengths have a tolerance of +/- 10% from the value specified in this file. Any bond
outside this tolerance will not be recognized as being connected to the atom being assigned parameters.
.. _out:
out
---
Files with the out file extension contain generic output. As it is not possible
to categorize all data file formats, |Gromacs| has a generic file format called
out of which no format is given.
.. _pdb:
pdb
---
Files with the :ref:`pdb` extension are molecular
structure files in the protein databank file format. The protein
databank file format describes the positions of atoms in a molecular
structure. Coordinates are read from the ATOM and HETATM records,
until the file ends or an ENDMDL record is encountered.
|Gromacs| programs can read and write a simulation box in the
CRYST1 entry.
The pdb format can also be used as a trajectory format:
several structures, separated by ENDMDL, can be read from
or written to one file.
Example
+++++++
A pdb file should look like this::
ATOM 1 H1 LYS 1 14.260 6.590 34.480 1.00 0.00
ATOM 2 H2 LYS 1 13.760 5.000 34.340 1.00 0.00
ATOM 3 N LYS 1 14.090 5.850 33.800 1.00 0.00
ATOM 4 H3 LYS 1 14.920 5.560 33.270 1.00 0.00
...
...
.. _rtp:
rtp
---
The rtp file extension stands for residue topology.
Such a file is needed by :ref:`gmx pdb2gmx`
to make a |Gromacs| topology for a protein contained in a :ref:`pdb`
file. The file contains the default interaction type for the 4 bonded
interactions and residue entries, which consist of atoms and
optionally bonds, angles dihedrals and impropers.
Parameters can be added to bonds, angles, dihedrals and impropers,
these parameters override the standard parameters in the :ref:`itp` files.
This should only be used in special cases.
Instead of parameters a string can be added for each bonded interaction,
the string is copied to the :ref:`top` file,
this is used for the GROMOS96 forcefield.
:ref:`gmx pdb2gmx` automatically generates all angles,
this means that the ``[angles]`` field is only
useful for overriding :ref:`itp` parameters.
:ref:`gmx pdb2gmx` automatically generates one proper
dihedral for every rotatable bond, preferably on heavy atoms.
When the ``[dihedrals]`` field is used, no other dihedrals will
be generated for the bonds corresponding to the specified dihedrals.
It is possible to put more than one dihedral on a rotatable bond.
:ref:`gmx pdb2gmx` sets the number exclusions to 3, which
means that interactions between atoms connected by at most 3 bonds are
excluded. Pair interactions are generated for all pairs of atoms which are
separated by 3 bonds (except pairs of hydrogens).
When more interactions need to be excluded, or some pair interactions should
not be generated, an ``[exclusions]`` field can be added, followed by
pairs of atom names on separate lines. All non-bonded and pair interactions
between these atoms will be excluded.
A sample is included below.
::
[ bondedtypes ] ; mandatory
; bonds angles dihedrals impropers
1 1 1 2 ; mandatory
[ GLY ] ; mandatory
[ atoms ] ; mandatory
; name type charge chargegroup
N N -0.280 0
H H 0.280 0
CA CH2 0.000 1
C C 0.380 2
O O -0.380 2
[ bonds ] ; optional
;atom1 atom2 b0 kb
N H
N CA
CA C
C O
-C N
[ exclusions ] ; optional
;atom1 atom2
[ angles ] ; optional
;atom1 atom2 atom3 th0 cth
[ dihedrals ] ; optional
;atom1 atom2 atom3 atom4 phi0 cp mult
[ impropers ] ; optional
;atom1 atom2 atom3 atom4 q0 cq
N -C CA H
-C -CA N -O
[ ZN ]
[ atoms ]
ZN ZN 2.000 0
.. _r2b:
r2b
---
The r2b file translates the residue names for residues that have different names in different
force fields, or have different names depending on their protonation states.
.. _tdb:
tdb
---
tdb files contain the information about amino acid termini that can be placed at the
end of a polypeptide chain.
.. _tex:
tex
---
We use **LaTeX** for *document* processing.
Although the input is not so
user friendly, it has some advantages over *word* processors.
* **LaTeX** knows a lot about formatting, probably much more than you.
* The input is clear, you always know what you are doing
* It makes anything from letters to a thesis
* Much more...
.. _tng:
tng
---
Files with the ``.tng`` file extension can contain all kinds of data
related to the trajectory of a simulation. For example, it might
contain coordinates, velocities, forces and/or energies. Various :ref:`mdp`
file options control which of these are written by :ref:`gmx mdrun`, whether data
is written with compression, and how lossy that compression can be.
This file is in portable binary format and can be read with :ref:`gmx dump`.
.. parsed-literal::
:ref:`gmx dump` -f traj.tng
or if you're not such a fast reader::
gmx dump -f traj.tng | less
You can also get a quick look in the contents of the file (number of
frames etc.) using:
.. parsed-literal::
:ref:`gmx check` -f traj.tng
.. _top:
top
---
The top file extension stands for topology. It is an ascii file which is
read by :ref:`gmx grompp` which processes it
and creates a binary topology (:ref:`tpr` file).
A sample file is included below::
;
; Example topology file
;
[ defaults ]
; nbfunc comb-rule gen-pairs fudgeLJ fudgeQQ
1 1 no 1.0 1.0
; The force field files to be included
#include "rt41c5.itp"
[ moleculetype ]
; name nrexcl
Urea 3
[ atoms ]
; nr type resnr residu atom cgnr charge
1 C 1 UREA C1 1 0.683
2 O 1 UREA O2 1 -0.683
3 NT 1 UREA N3 2 -0.622
4 H 1 UREA H4 2 0.346
5 H 1 UREA H5 2 0.276
6 NT 1 UREA N6 3 -0.622
7 H 1 UREA H7 3 0.346
8 H 1 UREA H8 3 0.276
[ bonds ]
; ai aj funct c0 c1
3 4 1 1.000000e-01 3.744680e+05
3 5 1 1.000000e-01 3.744680e+05
6 7 1 1.000000e-01 3.744680e+05
6 8 1 1.000000e-01 3.744680e+05
1 2 1 1.230000e-01 5.020800e+05
1 3 1 1.330000e-01 3.765600e+05
1 6 1 1.330000e-01 3.765600e+05
[ pairs ]
; ai aj funct c0 c1
2 4 1 0.000000e+00 0.000000e+00
2 5 1 0.000000e+00 0.000000e+00
2 7 1 0.000000e+00 0.000000e+00
2 8 1 0.000000e+00 0.000000e+00
3 7 1 0.000000e+00 0.000000e+00
3 8 1 0.000000e+00 0.000000e+00
4 6 1 0.000000e+00 0.000000e+00
5 6 1 0.000000e+00 0.000000e+00
[ angles ]
; ai aj ak funct c0 c1
1 3 4 1 1.200000e+02 2.928800e+02
1 3 5 1 1.200000e+02 2.928800e+02
4 3 5 1 1.200000e+02 3.347200e+02
1 6 7 1 1.200000e+02 2.928800e+02
1 6 8 1 1.200000e+02 2.928800e+02
7 6 8 1 1.200000e+02 3.347200e+02
2 1 3 1 1.215000e+02 5.020800e+02
2 1 6 1 1.215000e+02 5.020800e+02
3 1 6 1 1.170000e+02 5.020800e+02
[ dihedrals ]
; ai aj ak al funct c0 c1 c2
2 1 3 4 1 1.800000e+02 3.347200e+01 2.000000e+00
6 1 3 4 1 1.800000e+02 3.347200e+01 2.000000e+00
2 1 3 5 1 1.800000e+02 3.347200e+01 2.000000e+00
6 1 3 5 1 1.800000e+02 3.347200e+01 2.000000e+00
2 1 6 7 1 1.800000e+02 3.347200e+01 2.000000e+00
3 1 6 7 1 1.800000e+02 3.347200e+01 2.000000e+00
2 1 6 8 1 1.800000e+02 3.347200e+01 2.000000e+00
3 1 6 8 1 1.800000e+02 3.347200e+01 2.000000e+00
[ dihedrals ]
; ai aj ak al funct c0 c1
3 4 5 1 2 0.000000e+00 1.673600e+02
6 7 8 1 2 0.000000e+00 1.673600e+02
1 3 6 2 2 0.000000e+00 1.673600e+02
; Include SPC water topology
#include "spc.itp"
[ system ]
Urea in Water
[ molecules ]
Urea 1
SOL 1000
.. _tpr:
tpr
---
The tpr file extension stands for portable binary run input file. This file
contains the starting structure of your simulation, the molecular topology
and all the simulation parameters. Because this file is in binary format it
cannot be read with a normal editor. To read a portable binary run input
file type:
.. parsed-literal::
:ref:`gmx dump` -s topol.tpr
or if you're not such a fast reader::
gmx dump -s topol.tpr | less
You can also compare two tpr files using:
.. parsed-literal::
:ref:`gmx check` -s1 top1 -s2 top2 | less
.. _trr:
trr
---
Files with the trr file extension contain the trajectory of a simulation.
In this file all the coordinates, velocities, forces and energies are
printed as you told |Gromacs| in your mdp file. This file is in portable binary
format and can be read with :ref:`gmx dump`::
gmx dump -f traj.trr
or if you're not such a fast reader::
gmx dump -f traj.trr | less
You can also get a quick look in the contents of the file (number of
frames etc.) using:
.. parsed-literal::
% :ref:`gmx check` -f traj.trr
.. _vsd:
vsd
---
The vsd file contains the information on how to place virtual sites on a number
of different molecules in a force field.
.. _xdr:
xdr
---
|Gromacs| uses the XDR file format to store things like coordinate files internally.
.. _xpm:
xpm
---
The |Gromacs| xpm file format is compatible with the XPixMap format
and is used for storing matrix data.
Thus |Gromacs| xpm files can be viewed directly with programs like XV.
Alternatively, they can be imported into GIMP and scaled to 300 DPI,
using strong antialiasing for font and graphics.
The first matrix data line in an xpm file corresponds to the last matrix
row.
In addition to the XPixMap format, |Gromacs| xpm files may contain
extra fields. The information in these fields is used when converting
an xpm file to EPS with :ref:`gmx xpm2ps`.
The optional extra field are:
* Before the ``gv_xpm`` declaration: ``title``, ``legend``,
``x-label``, ``y-label`` and ``type``, all followed by a string.
The ``legend`` field determines the legend title.
The ``type`` field must be followed by ``"continuous"`` or
``"discrete"``, this determines which type of legend will be drawn in an EPS
file, the default type is continuous.
* The xpm colormap entries may be followed by a string, which is a label for
that color.
* Between the colormap and the matrix data, the fields ``x-axis`` and/or
``y-axis`` may be present followed by the tick-marks for that axis.
The example |Gromacs| xpm file below contains all the extra fields.
The C-comment delimiters and the colon in the extra fields are optional.
::
/* XPM */
/* This matrix is generated by g_rms. */
/* title: "Backbone RMSD matrix" */
/* legend: "RMSD (nm)" */
/* x-label: "Time (ps)" */
/* y-label: "Time (ps)" */
/* type: "Continuous" */
static char * gv_xpm[] = {
"13 13 6 1",
"A c #FFFFFF " /* "0" */,
"B c #CCCCCC " /* "0.0399" */,
"C c #999999 " /* "0.0798" */,
"D c #666666 " /* "0.12" */,
"E c #333333 " /* "0.16" */,
"F c #000000 " /* "0.2" */,
/* x-axis: 0 40 80 120 160 200 240 280 320 360 400 440 480 */
/* y-axis: 0 40 80 120 160 200 240 280 320 360 400 440 480 */
"FEDDDDCCCCCBA",
"FEDDDCCCCBBAB",
"FEDDDCCCCBABC",
"FDDDDCCCCABBC",
"EDDCCCCBACCCC",
"EDCCCCBABCCCC",
"EDCCCBABCCCCC",
"EDCCBABCCCCCD",
"EDCCABCCCDDDD",
"ECCACCCCCDDDD",
"ECACCCCCDDDDD",
"DACCDDDDDDEEE",
"ADEEEEEEEFFFF"
.. _xtc:
xtc
---
The xtc format is a **portable** format for trajectories.
It uses the *xdr* routines for writing and reading
data which was created for the Unix NFS system. The trajectories
are written using a reduced precision algorithm which works
in the following way: the coordinates (in nm) are multiplied by a scale
factor, typically 1000, so that you have coordinates in pm.
These are rounded to integer values. Then several other tricks are
performed, for instance making use of the fact that atoms close
in sequence are usually close in space too (e.g. a water molecule).
To this end, the *xdr* library is extended with a special routine
to write 3-D float coordinates. The routine was originally written
by Frans van Hoesel as part of an Europort project. An updated
version of it can be obtained through `this link <https://github.com/Pappulab/xdrf>`_.
All the data is stored using calls to *xdr* routines.
**int** magic
A magic number, for the current file version its value is 1995.
**int** natoms
The number of atoms in the trajectory.
**int** step
The simulation step.
**float** time
The simulation time.
**float** box[3][3]
The computational box which is stored as a set of three basis
vectors, to allow for triclinic PBC. For a rectangular box the
box edges are stored on the diagonal of the matrix.
**3dfcoord** x[natoms]
The coordinates themselves stored in reduced precision.
Please note that when the number of atoms is smaller than 9
no reduced precision is used.
Using xtc in your C++ programs
++++++++++++++++++++++++++++++
It is possible to write your own analysis tools to take advantage
of the compressed .xtc format files: see the
``template.cpp`` file in the
``share/gromacs/template`` directory of your installation
for an example and
https://manual.gromacs.org/current/doxygen/html-full/page_analysistemplate.xhtml
for documentation.
To read and write xtc files the following routines are available via ``xtcio.h``::
/* All functions return 1 if successful, 0 otherwise */
struct t_fileio* open_xtc(const char* filename, const char* mode);
/* Open a file for xdr I/O */
void close_xtc(struct t_fileio* fio);
/* Close the file for xdr I/O */
int read_first_xtc(struct t_fileio* fio,
int* natoms,
int64_t* step,
real* time,
matrix box,
rvec** x,
real* prec,
gmx_bool* bOK);
/* Open xtc file, read xtc file first time, allocate memory for x */
int read_next_xtc(struct t_fileio* fio, int natoms, int64_t* step, real* time, matrix box, rvec* x, real* prec, gmx_bool* bOK);
/* Read subsequent frames */
int write_xtc(struct t_fileio* fio, int natoms, int64_t step, real time, const rvec* box, const rvec* x, real prec);
/* Write a frame to xtc file */
To use the library function include ``"gromacs/fileio/xtcio.h"``
in your file and link with ``-lgromacs``.
.. _xvg:
xvg
---
Almost all output from |Gromacs| analysis tools is ready as input for
Grace, formerly known as Xmgr. We use Grace, because it is very flexible, and it is also
free software. It produces PostScript(tm) output, which is very suitable
for inclusion in eg. LaTeX documents, but also for other word processors.
A sample Grace session with |Gromacs| data is shown below:
.. image:: plots/xvgr.*
:alt: Sample xvg graphic produced using the |Gromacs| tools
.. raw:: latex
\clearpage
|