1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
/* -*- mode: c; tab-width: 4; indent-tabs-mode: n; c-basic-offset: 4 -*-
*
* $Id: gmx_fft.h,v 1.1.2.2 2005/10/12 09:16:51 lindahl Exp $
*
* Gromacs 4.0 Copyright (c) 1991-2003
* David van der Spoel, Erik Lindahl, University of Groningen.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* To help us fund GROMACS development, we humbly ask that you cite
* the research papers on the package. Check out http://www.gromacs.org
*
* And Hey:
* Gnomes, ROck Monsters And Chili Sauce
*/
#ifndef _GMX_FFT_H_
#define _GMX_FFT_H_
/*! \file gmx_fft.h
* \brief Fast Fourier Transforms.
*
* This file provides an abstract Gromacs interface to Fourier transforms,
* including multi-dimensional and real-to-complex transforms.
*
* Internally it is implemented as wrappers to external libraries such
* as FFTW or the Intel Math Kernel Library, but we also have a built-in
* version of FFTPACK in case the faster alternatives are unavailable.
*
* We also provide our own multi-dimensional transform setups even when
* the underlying library does not support it directly.
*
*/
#include <stdio.h>
#include "types/simple.h"
#include "gmxcomplex.h"
#ifdef __cplusplus
extern "C" {
#endif
#if 0
} /* fixes auto-indentation problems */
#endif
/*! \brief Datatype for FFT setup
*
* The gmx_fft_t type contains all the setup information, e.g. twiddle
* factors, necessary to perform an FFT. Internally it is mapped to
* whatever FFT library we are using, or the built-in FFTPACK if no fast
* external library is available.
*
* Since some of the libraries (e.g. MKL) store work array data in their
* handles this datatype should only be used for one thread at a time, i.e.
* they should allocate one instance each when executing in parallel.
*/
typedef struct gmx_fft *
gmx_fft_t;
/*! \brief Specifier for FFT direction.
*
* The definition of the 1D forward transform from input x[] to output y[] is
* \f[
* y_{k} = \sum_{j=0}^{N-1} x_{j} \exp{-i 2 \pi j k /N}
* \f]
*
* while the corresponding backward transform is
*
* \f[
* y_{k} = \sum_{j=0}^{N-1} x_{j} \exp{i 2 \pi j k /N}
* \f]
*
* A forward-backward transform pair will this result in data scaled by N.
*
* For complex-to-complex transforms you can only use one of
* GMX_FFT_FORWARD or GMX_FFT_BACKWARD, and for real-complex transforms you
* can only use GMX_FFT_REAL_TO_COMPLEX or GMX_FFT_COMPLEX_TO_REAL.
*/
enum gmx_fft_direction
{
GMX_FFT_FORWARD, /*!< Forward complex-to-complex transform */
GMX_FFT_BACKWARD, /*!< Backward complex-to-complex transform */
GMX_FFT_REAL_TO_COMPLEX, /*!< Real-to-complex valued fft */
GMX_FFT_COMPLEX_TO_REAL /*!< Complex-to-real valued fft */
};
/*! \brief Setup a 1-dimensional complex-to-complex transform
*
* \param fft Pointer to opaque Gromacs FFT datatype
* \param nx Length of transform
*
* \return status - 0 or a standard error message.
*
* \note Since some of the libraries (e.g. MKL) store work array data in their
* handles this datatype should only be used for one thread at a time,
* i.e. you should create one copy per thread when executing in parallel.
*/
int
gmx_fft_init_1d (gmx_fft_t * fft,
int nx);
/*! \brief Setup a 1-dimensional real-to-complex transform
*
* \param fft Pointer to opaque Gromacs FFT datatype
* \param nx Length of transform in real space
*
* \return status - 0 or a standard error message.
*
* \note Since some of the libraries (e.g. MKL) store work array data in their
* handles this datatype should only be used for one thread at a time,
* i.e. you should create one copy per thread when executing in parallel.
*/
int
gmx_fft_init_1d_real (gmx_fft_t * fft,
int nx);
/*! \brief Setup a 2-dimensional complex-to-complex transform
*
* \param fft Pointer to opaque Gromacs FFT datatype
* \param nx Length of transform in first dimension
* \param ny Length of transform in second dimension
*
* \return status - 0 or a standard error message.
*
* \note Since some of the libraries (e.g. MKL) store work array data in their
* handles this datatype should only be used for one thread at a time,
* i.e. you should create one copy per thread when executing in parallel.
*/
int
gmx_fft_init_2d (gmx_fft_t * fft,
int nx,
int ny);
/*! \brief Setup a 2-dimensional real-to-complex transform
*
* \param fft Pointer to opaque Gromacs FFT datatype
* \param nx Length of transform in first dimension
* \param ny Length of transform in second dimension
*
* The normal space is assumed to be real, while the values in
* frequency space are complex.
*
* \return status - 0 or a standard error message.
*
* \note Since some of the libraries (e.g. MKL) store work array data in their
* handles this datatype should only be used for one thread at a time,
* i.e. you should create one copy per thread when executing in parallel.
*/
int
gmx_fft_init_2d_real (gmx_fft_t * fft,
int nx,
int ny);
/*! \brief Setup a 3-dimensional complex-to-complex transform
*
* \param fft Pointer to opaque Gromacs FFT datatype
* \param nx Length of transform in first dimension
* \param ny Length of transform in second dimension
* \param nz Length of transform in third dimension
*
* \return status - 0 or a standard error message.
*
* \note Since some of the libraries (e.g. MKL) store work array data in their
* handles this datatype should only be used for one thread at a time,
* i.e. you should create one copy per thread when executing in parallel.
*/
int
gmx_fft_init_3d (gmx_fft_t * fft,
int nx,
int ny,
int nz);
/*! \brief Setup a 3-dimensional real-to-complex transform
*
* \param fft Pointer to opaque Gromacs FFT datatype
* \param nx Length of transform in first dimension
* \param ny Length of transform in second dimension
* \param nz Length of transform in third dimension
*
* The normal space is assumed to be real, while the values in
* frequency space are complex.
*
* \return status - 0 or a standard error message.
*
* \note Since some of the libraries (e.g. MKL) store work array data in their
* handles this datatype should only be used for one thread at a time,
* i.e. you should create one copy per thread when executing in parallel.
*/
int
gmx_fft_init_3d_real (gmx_fft_t * fft,
int nx,
int ny,
int nz);
/*! \brief Perform a 1-dimensional complex-to-complex transform
*
* Performs an instance of a transform previously initiated.
*
* \param setup Setup returned from gmx_fft_init_1d()
* \param dir Forward or Backward
* \param in_data Input grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* \param out_data Output grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* You can provide the same pointer for in_data and out_data
* to perform an in-place transform.
*
* \return 0 on success, or an error code.
*
* \note Data pointers are declared as void, to avoid casting pointers
* depending on your grid type.
*/
int
gmx_fft_1d (gmx_fft_t setup,
enum gmx_fft_direction dir,
void * in_data,
void * out_data);
/*! \brief Perform a 1-dimensional real-to-complex transform
*
* Performs an instance of a transform previously initiated.
*
* \param setup Setup returned from gmx_fft_init_1d_real()
* \param dir Real-to-complex or complex-to-real
* \param in_data Input grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* \param out_data Output grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* You can provide the same pointer for in_data and out_data
* to perform an in-place transform.
*
* If you are doing an in-place transform, the array must be padded up to
* an even integer length so n/2 complex numbers can fit. Out-of-place arrays
* should not be padded (although it doesn't matter in 1d).
*
* \return 0 on success, or an error code.
*
* \note Data pointers are declared as void, to avoid casting pointers
* depending on transform direction.
*/
int
gmx_fft_1d_real (gmx_fft_t setup,
enum gmx_fft_direction dir,
void * in_data,
void * out_data);
/*! \brief Perform a 2-dimensional complex-to-complex transform
*
* Performs an instance of a transform previously initiated.
*
* \param setup Setup returned from gmx_fft_init_1d()
* \param dir Forward or Backward
* \param in_data Input grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* \param out_data Output grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* You can provide the same pointer for in_data and out_data
* to perform an in-place transform.
*
* \return 0 on success, or an error code.
*
* \note Data pointers are declared as void, to avoid casting pointers
* depending on your grid type.
*/
int
gmx_fft_2d (gmx_fft_t setup,
enum gmx_fft_direction dir,
void * in_data,
void * out_data);
/*! \brief Perform a 2-dimensional real-to-complex transform
*
* Performs an instance of a transform previously initiated.
*
* \param setup Setup returned from gmx_fft_init_1d_real()
* \param dir Real-to-complex or complex-to-real
* \param in_data Input grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* \param out_data Output grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* You can provide the same pointer for in_data and out_data
* to perform an in-place transform.
*
* \return 0 on success, or an error code.
*
* \note If you are doing an in-place transform, the last dimension of the
* array MUST be padded up to an even integer length so n/2 complex numbers can
* fit. Thus, if the real grid e.g. has dimension 5*3, you must allocate it as
* a 5*4 array, where the last element in the second dimension is padding.
* The complex data will be written to the same array, but since that dimension
* is 5*2 it will now fill the entire array. Reverse complex-to-real in-place
* transformation will produce the same sort of padded array.
*
* The padding does NOT apply to out-of-place transformation. In that case the
* input array will simply be 5*3 of real, while the output is 5*2 of complex.
*
* \note Data pointers are declared as void, to avoid casting pointers
* depending on transform direction.
*/
int
gmx_fft_2d_real (gmx_fft_t setup,
enum gmx_fft_direction dir,
void * in_data,
void * out_data);
/*! \brief Perform a 3-dimensional complex-to-complex transform
*
* Performs an instance of a transform previously initiated.
*
* \param setup Setup returned from gmx_fft_init_1d()
* \param dir Forward or Backward
* \param in_data Input grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* \param out_data Output grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* You can provide the same pointer for in_data and out_data
* to perform an in-place transform.
*
* \return 0 on success, or an error code.
*
* \note Data pointers are declared as void, to avoid casting pointers
* depending on your grid type.
*/
int
gmx_fft_3d (gmx_fft_t setup,
enum gmx_fft_direction dir,
void * in_data,
void * out_data);
/*! \brief Perform a 3-dimensional real-to-complex transform
*
* Performs an instance of a transform previously initiated.
*
* \param setup Setup returned from gmx_fft_init_1d_real()
* \param dir Real-to-complex or complex-to-real
* \param in_data Input grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* \param out_data Output grid data. This should be allocated with gmx_new()
* to make it 16-byte aligned for better performance.
* You can provide the same pointer for in_data and out_data
* to perform an in-place transform.
*
* \return 0 on success, or an error code.
*
* \note If you are doing an in-place transform, the last dimension of the
* array MUST be padded up to an even integer length so n/2 complex numbers can
* fit. Thus, if the real grid e.g. has dimension 7*5*3, you must allocate it as
* a 7*5*4 array, where the last element in the second dimension is padding.
* The complex data will be written to the same array, but since that dimension
* is 7*5*2 it will now fill the entire array. Reverse complex-to-real in-place
* transformation will produce the same sort of padded array.
*
* The padding does NOT apply to out-of-place transformation. In that case the
* input will simply be 7*5*3 of real, while the output is 7*5*2 of complex.
*
* \note Data pointers are declared as void, to avoid casting pointers
* depending on transform direction.
*/
int
gmx_fft_3d_real (gmx_fft_t setup,
enum gmx_fft_direction dir,
void * in_data,
void * out_data);
/*! \brief Release an FFT setup structure
*
* Destroy setup and release all allocated memory.
*
* \param setup Setup returned from gmx_fft_init_1d(), or one
* of the other initializers.
*
*/
void
gmx_fft_destroy (gmx_fft_t setup);
/*! \brief Transpose 2d complex matrix, in-place or out-of-place.
*
* This routines works when the matrix is non-square, i.e. nx!=ny too,
* without allocating an entire matrix of work memory, which is important
* for huge FFT grids.
*
* \param in_data Input data, to be transposed
* \param out_data Output, transposed data. If this is identical to
* in_data, an in-place transpose is performed.
* \param nx Number of rows before transpose
* \param ny Number of columns before transpose
*
* \return GMX_SUCCESS, or an error code from gmx_errno.h
*/
int
gmx_fft_transpose_2d (t_complex * in_data,
t_complex * out_data,
int nx,
int ny);
/*! \brief Transpose 2d multi-element matrix
*
* This routine is very similar to gmx_fft_transpose_2d(), but it
* supports matrices with more than one data value for each position.
* It is extremely useful when transposing the x/y dimensions of a 3d
* matrix - in that case you just set nelem to nz, and the routine will do
* and x/y transpose where it moves entire columns of z data
*
* This routines works when the matrix is non-square, i.e. nx!=ny too,
* without allocating an entire matrix of work memory, which is important
* for huge FFT grid.
*
* For performance reasons you need to provide a \a small workarray
* with length at least 2*nelem (note that the type is char, not t_complex).
*
* \param in_data Input data, to be transposed
* \param out_data Output, transposed data. If this is identical to
* in_data, an in-place transpose is performed.
* \param nx Number of rows before transpose
* \param ny Number of columns before transpose
* \param nelem Number of t_complex values in each position. If this
* is 1 it is faster to use gmx_fft_transpose_2d() directly.
* \param work Work array of length 2*nelem, type t_complex.
*
* \return GMX_SUCCESS, or an error code from gmx_errno.h
*/
int
gmx_fft_transpose_2d_nelem(t_complex * in_data,
t_complex * out_data,
int nx,
int ny,
int nelem,
t_complex * work);
#ifdef __cplusplus
}
#endif
#endif /* _GMX_FFT_H_ */
|