1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
/* -*- mode: c; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; c-file-style: "stroustrup"; -*-
*
*
* This source code is part of
*
* G R O M A C S
*
* GROningen MAchine for Chemical Simulations
*
* VERSION 3.2.0
* Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
* Copyright (c) 1991-2000, University of Groningen, The Netherlands.
* Copyright (c) 2001-2004, The GROMACS development team,
* check out http://www.gromacs.org for more information.
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* If you want to redistribute modifications, please consider that
* scientific software is very special. Version control is crucial -
* bugs must be traceable. We will be happy to consider code for
* inclusion in the official distribution, but derived work must not
* be called official GROMACS. Details are found in the README & COPYING
* files - if they are missing, get the official version at www.gromacs.org.
*
* To help us fund GROMACS development, we humbly ask that you cite
* the papers on the package - you can find them in the top README file.
*
* For more info, check our website at http://www.gromacs.org
*
* And Hey:
* Gromacs Runs On Most of All Computer Systems
*/
#ifndef _maths_h
#define _maths_h
#include <math.h>
#include "types/simple.h"
#include "typedefs.h"
#ifdef __cplusplus
extern "C" {
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifndef M_PI_2
#define M_PI_2 1.57079632679489661923
#endif
#ifndef M_2PI
#define M_2PI 6.28318530717958647692
#endif
#ifndef M_SQRT2
#define M_SQRT2 sqrt(2.0)
#endif
/* Suzuki-Yoshida Constants, for n=3 and n=5, for symplectic integration */
/* for n=1, w0 = 1 */
/* for n=3, w0 = w2 = 1/(2-2^-(1/3)), w1 = 1-2*w0 */
/* for n=5, w0 = w1 = w3 = w4 = 1/(4-4^-(1/3)), w1 = 1-4*w0 */
#define MAX_SUZUKI_YOSHIDA_NUM 5
#define SUZUKI_YOSHIDA_NUM 5
static const double sy_const_1[] = { 1. };
static const double sy_const_3[] = { 0.828981543588751,-0.657963087177502,0.828981543588751 };
static const double sy_const_5[] = { 0.2967324292201065,0.2967324292201065,-0.186929716880426,0.2967324292201065,0.2967324292201065 };
static const double* sy_const[] = {
NULL,
sy_const_1,
NULL,
sy_const_3,
NULL,
sy_const_5
};
/*
static const double sy_const[MAX_SUZUKI_YOSHIDA_NUM+1][MAX_SUZUKI_YOSHIDA_NUM+1] = {
{},
{1},
{},
{0.828981543588751,-0.657963087177502,0.828981543588751},
{},
{0.2967324292201065,0.2967324292201065,-0.186929716880426,0.2967324292201065,0.2967324292201065}
};*/
int gmx_nint(real a);
real sign(real x,real y);
int gmx_nint(real a);
real sign(real x,real y);
real cuberoot (real a);
real gmx_erf(real x);
real gmx_erfc(real x);
gmx_bool gmx_isfinite(real x);
/*! \brief Check if two numbers are within a tolerance
*
* This routine checks if the relative difference between two numbers is
* approximately within the given tolerance, defined as
* fabs(f1-f2)<=tolerance*fabs(f1+f2).
*
* To check if two floating-point numbers are almost identical, use this routine
* with the tolerance GMX_REAL_EPS, or GMX_DOUBLE_EPS if the check should be
* done in double regardless of Gromacs precision.
*
* To check if two algorithms produce similar results you will normally need
* to relax the tolerance significantly since many operations (e.g. summation)
* accumulate floating point errors.
*
* \param f1 First number to compare
* \param f2 Second number to compare
* \param tol Tolerance to use
*
* \return 1 if the relative difference is within tolerance, 0 if not.
*/
static int
gmx_within_tol(double f1,
double f2,
double tol)
{
/* The or-equal is important - otherwise we return false if f1==f2==0 */
if( fabs(f1-f2) <= tol*0.5*(fabs(f1)+fabs(f2)) )
{
return 1;
}
else
{
return 0;
}
}
/**
* Check if a number is smaller than some preset safe minimum
* value, currently defined as GMX_REAL_MIN/GMX_REAL_EPS.
*
* If a number is smaller than this value we risk numerical overflow
* if any number larger than 1.0/GMX_REAL_EPS is divided by it.
*
* \return 1 if 'almost' numerically zero, 0 otherwise.
*/
static int
gmx_numzero(double a)
{
return gmx_within_tol(a,0.0,GMX_REAL_MIN/GMX_REAL_EPS);
}
static real
gmx_log2(real x)
{
const real iclog2 = 1.0/log( 2.0 );
return log( x ) * iclog2;
}
/*! /brief Multiply two large ints
*
* Returns true when overflow did not occur.
*/
gmx_bool
check_int_multiply_for_overflow(gmx_large_int_t a,
gmx_large_int_t b,
gmx_large_int_t *result);
#ifdef __cplusplus
}
#endif
#endif /* _maths_h */
|