1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
|
/* -*- mode: c; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; c-file-style: "stroustrup"; -*-
*
* This source code is part of
*
* G R O M A C S
*
* GROningen MAchine for Chemical Simulations
*
* VERSION 4.5
* Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
* Copyright (c) 1991-2000, University of Groningen, The Netherlands.
* Copyright (c) 2001-2008, The GROMACS development team,
* check out http://www.gromacs.org for more information.
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* If you want to redistribute modifications, please consider that
* scientific software is very special. Version control is crucial -
* bugs must be traceable. We will be happy to consider code for
* inclusion in the official distribution, but derived work must not
* be called official GROMACS. Details are found in the README & COPYING
* files - if they are missing, get the official version at www.gromacs.org.
*
* To help us fund GROMACS development, we humbly ask that you cite
* the papers on the package - you can find them in the top README file.
*
* For more info, check our website at http://www.gromacs.org
*
* And Hey:
* Groningen Machine for Chemical Simulation
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <math.h>
#include "sysstuff.h"
#include "typedefs.h"
#include "macros.h"
#include "smalloc.h"
#include "assert.h"
#include "physics.h"
#include "macros.h"
#include "vec.h"
#include "force.h"
#include "invblock.h"
#include "confio.h"
#include "names.h"
#include "network.h"
#include "pbc.h"
#include "ns.h"
#include "nrnb.h"
#include "bondf.h"
#include "mshift.h"
#include "txtdump.h"
#include "copyrite.h"
#include "qmmm.h"
#include <stdio.h>
#include <string.h>
#include "gmx_fatal.h"
#include "typedefs.h"
#include <stdlib.h>
/* ORCA interface routines */
void init_orca(t_commrec *cr, t_QMrec *qm, t_MMrec *mm)
{
char
*buf;
snew(buf,200);
/* ORCA settings on the system */
buf = getenv("BASENAME");
if (buf){
snew(qm->orca_basename,200);
sscanf(buf,"%s",qm->orca_basename);
}
else
gmx_fatal(FARGS,"no $BASENAME\n");
/* ORCA directory on the system */
snew(buf,200);
buf = getenv("ORCA_PATH");
fprintf(stderr,"%s",buf);
if (buf){
snew(qm->orca_dir,200);
sscanf(buf,"%s",qm->orca_dir);
}
else
gmx_fatal(FARGS,"no $ORCA_PATH, check manual\n");
fprintf(stderr,"%s...\n",qm->orca_dir);
fprintf(stderr,"orca initialised...\n");
/* since we append the output to the BASENAME.out file,
we should delete an existent old out-file here. */
sprintf(buf,"%s.out",qm->orca_basename);
remove(buf);
}
void write_orca_input(int step ,t_forcerec *fr, t_QMrec *qm, t_MMrec *mm)
{
int
i;
t_QMMMrec
*QMMMrec;
FILE
*out, *pcFile, *addInputFile, *LJCoeff;
char
*buf,*orcaInput,*addInputFilename,*LJCoeffFilename,
*pcFilename,*exclInName,*exclOutName;
QMMMrec = fr->qr;
/* write the first part of the input-file */
snew(orcaInput,200);
sprintf(orcaInput,"%s.inp",qm->orca_basename);
out = fopen(orcaInput,"w");
snew(addInputFilename,200);
sprintf(addInputFilename,"%s.ORCAINFO",qm->orca_basename);
addInputFile = fopen(addInputFilename,"r");
fprintf(out, "#input-file generated by gromacs\n");
if(qm->bTS){
fprintf(out,"!QMMMOpt TightSCF\n");
fprintf(out,"%s\n","%geom TS_Search EF end");
}
else if (qm->bOPT){
fprintf(out,"!QMMMOpt TightSCF\n");
}
else{
fprintf(out,"!EnGrad TightSCF\n");
}
/* here we include the insertion of the additional orca-input */
snew(buf,200);
if (addInputFile!=NULL) {
while (!feof(addInputFile)) {
if (fgets(buf, 200, addInputFile) != NULL)
fputs(buf, out);
}
}
else {
fprintf(stderr,"No information on the calculation given in <%s>\n",addInputFilename);
gmx_call("qm_orca.c");
}
fclose(addInputFile);
if(qm->bTS||qm->bOPT){
/* freeze the frontier QM atoms and Link atoms. This is
* important only if a full QM subsystem optimization is done
* with a frozen MM environmeent. For dynamics, or gromacs's own
* optimization routines this is not important.
*/
/* ORCA reads the exclusions from LJCoeffFilename.Excl,
*so we have to rename the file
*/
int didStart = 0;
for(i=0;i<qm->nrQMatoms;i++){
if(qm->frontatoms[i]){
if (!didStart){
fprintf(out,"%s\n","%geom");
fprintf(out," Constraints \n");
didStart = 1;
}
fprintf(out," {C %d C}\n",i); /* counting from 0 */
}
}
if (didStart) fprintf(out," end\n end\n");
/* make a file with information on the C6 and C12 coefficients */
if(QMMMrec->QMMMscheme!=eQMMMschemeoniom && mm->nrMMatoms){
snew(exclInName,200);
snew(exclOutName,200);
sprintf(exclInName,"QMMMexcl.dat");
sprintf(exclOutName,"%s.LJ.Excl",qm->orca_basename);
rename(exclInName,exclOutName);
snew(LJCoeffFilename,200);
sprintf(LJCoeffFilename,"%s.LJ",qm->orca_basename);
fprintf(out,"%s%s%s\n","%LJCOEFFICIENTS \"",LJCoeffFilename,"\"");
/* make a file with information on the C6 and C12 coefficients */
LJCoeff = fopen(LJCoeffFilename,"w");
fprintf(LJCoeff,"%d\n",qm->nrQMatoms);
for (i=0;i<qm->nrQMatoms;i++){
#ifdef GMX_DOUBLE
fprintf(LJCoeff,"%10.7lf %10.7lf\n",qm->c6[i],qm->c12[i]);
#else
fprintf(LJCoeff,"%10.7f %10.7f\n",qm->c6[i],qm->c12[i]);
#endif
}
fprintf(LJCoeff,"%d\n",mm->nrMMatoms);
for (i=0;i<mm->nrMMatoms;i++){
#ifdef GMX_DOUBLE
fprintf(LJCoeff,"%10.7lf %10.7lf\n",mm->c6[i],mm->c12[i]);
#else
fprintf(LJCoeff,"%10.7f %10.7f\n",mm->c6[i],mm->c12[i]);
#endif
}
fclose(LJCoeff);
}
}
/* write charge and multiplicity
*/
fprintf(out,"*xyz %2d%2d\n",qm->QMcharge,qm->multiplicity);
/* write the QM coordinates
*/
for (i=0;i<qm->nrQMatoms;i++){
int atomNr;
if (qm->atomicnumberQM[i]==0)
atomNr = 1;
else
atomNr = qm->atomicnumberQM[i];
#ifdef GMX_DOUBLE
fprintf(out,"%3d %10.7lf %10.7lf %10.7lf\n",
atomNr,
qm->xQM[i][XX]/0.1,
qm->xQM[i][YY]/0.1,
qm->xQM[i][ZZ]/0.1);
#else
fprintf(out,"%3d %10.7f %10.7f %10.7f\n",
atomNr,
qm->xQM[i][XX]/0.1,
qm->xQM[i][YY]/0.1,
qm->xQM[i][ZZ]/0.1);
#endif
}
fprintf(out,"*\n");
/* write the MM point charge data
*/
if(QMMMrec->QMMMscheme!=eQMMMschemeoniom && mm->nrMMatoms){
/* name of the point charge file */
snew(pcFilename,200);
sprintf(pcFilename,"%s.pc",qm->orca_basename);
fprintf(out,"%s%s%s\n","%pointcharges \"",pcFilename,"\"");
pcFile = fopen(pcFilename,"w");
fprintf(pcFile,"%d\n",mm->nrMMatoms);
for(i=0;i<mm->nrMMatoms;i++){
#ifdef GMX_DOUBLE
fprintf(pcFile,"%8.4lf %10.7lf %10.7lf %10.7lf\n",
mm->MMcharges[i],
mm->xMM[i][XX]/0.1,
mm->xMM[i][YY]/0.1,
mm->xMM[i][ZZ]/0.1);
#else
fprintf(pcFile,"%8.4f %10.7f %10.7f %10.7f\n",
mm->MMcharges[i],
mm->xMM[i][XX]/0.1,
mm->xMM[i][YY]/0.1,
mm->xMM[i][ZZ]/0.1);
#endif
}
fprintf(pcFile,"\n");
fclose(pcFile);
}
fprintf(out,"\n");
fclose(out);
} /* write_orca_input */
real read_orca_output(rvec QMgrad[],rvec MMgrad[],int step,t_forcerec *fr,
t_QMrec *qm, t_MMrec *mm)
{
int
i,j,atnum;
char
buf[300], tmp[300], orca_xyzFilename[300], orca_pcgradFilename[300], orca_engradFilename[300];
real
QMener;
FILE
*xyz, *pcgrad, *engrad;
int k;
t_QMMMrec
*QMMMrec;
QMMMrec = fr->qr;
/* in case of an optimization, the coordinates are printed in the
* xyz file, the energy and gradients for the QM part are stored in the engrad file
* and the gradients for the point charges are stored in the pc file.
*/
/* we need the new xyz coordinates of the QM atoms only for separate QM-optimization
*/
if(qm->bTS||qm->bOPT){
sprintf(orca_xyzFilename,"%s.xyz",qm->orca_basename);
xyz=fopen(orca_xyzFilename,"r");
if (fgets(buf,300,xyz) == NULL)
gmx_fatal(FARGS, "Unexpected end of ORCA output");
if (fgets(buf,300,xyz) == NULL)
gmx_fatal(FARGS, "Unexpected end of ORCA output");
for(i=0;i<qm->nrQMatoms;i++){
if (fgets(buf,300,xyz) == NULL)
gmx_fatal(FARGS, "Unexpected end of ORCA output");
#ifdef GMX_DOUBLE
sscanf(buf,"%s%lf%lf%lf\n",
tmp,
&qm->xQM[i][XX],
&qm->xQM[i][YY],
&qm->xQM[i][ZZ]);
#else
sscanf(buf,"%d%f%f%f\n",
&atnum,
&qm->xQM[i][XX],
&qm->xQM[i][YY],
&qm->xQM[i][ZZ]);
#endif
for(j=0;j<DIM;j++){
qm->xQM[i][j]*=0.1;
}
}
fclose(xyz);
}
sprintf(orca_engradFilename,"%s.engrad",qm->orca_basename);
engrad=fopen(orca_engradFilename,"r");
/* we read the energy and the gradient for the qm-atoms from the engrad file
*/
/* we can skip the first seven lines
*/
for (j=0;j<7;j++){
if (fgets(buf,300,engrad) == NULL)
gmx_fatal(FARGS, "Unexpected end of ORCA output");
}
/* now comes the energy
*/
if (fgets(buf,300,engrad) == NULL)
gmx_fatal(FARGS, "Unexpected end of ORCA output");
#ifdef GMX_DOUBLE
sscanf(buf,"%lf\n",&QMener);
#else
sscanf(buf,"%f\n", &QMener);
#endif
/* we can skip the next three lines
*/
for (j=0;j<3;j++){
if (fgets(buf,300,engrad) == NULL)
gmx_fatal(FARGS, "Unexpected end of ORCA output");
}
/* next lines contain the gradients of the QM atoms
* now comes the gradient, one value per line:
* (atom1 x \n atom1 y \n atom1 z \n atom2 x ...
*/
for(i=0;i<3*qm->nrQMatoms;i++){
k = i/3;
if (fgets(buf,300,engrad) == NULL)
gmx_fatal(FARGS, "Unexpected end of ORCA output");
#ifdef GMX_DOUBLE
if (i%3==0)
sscanf(buf,"%lf\n", &QMgrad[k][XX]);
else if (i%3==1)
sscanf(buf,"%lf\n", &QMgrad[k][YY]);
else if (i%3==2)
sscanf(buf,"%lf\n", &QMgrad[k][ZZ]);
#else
if (i%3==0)
sscanf(buf,"%f\n", &QMgrad[k][XX]);
else if (i%3==1)
sscanf(buf,"%f\n", &QMgrad[k][YY]);
else if (i%3==2)
sscanf(buf,"%f\n", &QMgrad[k][ZZ]);
#endif
}
fclose(engrad);
/* write the MM point charge data
*/
if(QMMMrec->QMMMscheme!=eQMMMschemeoniom && mm->nrMMatoms){
sprintf(orca_pcgradFilename,"%s.pcgrad",qm->orca_basename);
pcgrad=fopen(orca_pcgradFilename,"r");
/* we read the gradient for the mm-atoms from the pcgrad file
*/
/* we can skip the first line
*/
if (fgets(buf,300,pcgrad) == NULL)
gmx_fatal(FARGS, "Unexpected end of ORCA output");
for(i=0;i<mm->nrMMatoms;i++){
if (fgets(buf,300,pcgrad) == NULL)
gmx_fatal(FARGS, "Unexpected end of ORCA output");
#ifdef GMX_DOUBLE
sscanf(buf,"%lf%lf%lf\n",
&MMgrad[i][XX],
&MMgrad[i][YY],
&MMgrad[i][ZZ]);
#else
sscanf(buf,"%f%f%f\n",
&MMgrad[i][XX],
&MMgrad[i][YY],
&MMgrad[i][ZZ]);
#endif
}
fclose(pcgrad);
}
return(QMener);
}
void do_orca(int step,char *exe, char *orca_dir, char *basename)
{
/* make the call to the orca binary through system()
* The location of the binary is set through the
* environment.
*/
char
buf[100];
sprintf(buf,"%s/%s %s.inp >> %s.out",
orca_dir,
"orca",
basename,
basename);
fprintf(stderr,"Calling '%s'\n",buf);
if ( system(buf) != 0 )
gmx_fatal(FARGS,"Call to '%s' failed\n",buf);
}
real call_orca(t_commrec *cr, t_forcerec *fr,
t_QMrec *qm, t_MMrec *mm, rvec f[], rvec fshift[])
{
/* normal orca jobs */
static int
step=0;
int
i,j;
real
QMener=0.0;
rvec
*QMgrad,*MMgrad;
char
*exe;
snew(exe,30);
sprintf(exe,"%s","orca");
snew(QMgrad,qm->nrQMatoms);
snew(MMgrad,mm->nrMMatoms);
write_orca_input(step,fr,qm,mm);
do_orca(step,exe,qm->orca_dir,qm->orca_basename);
QMener = read_orca_output(QMgrad,MMgrad,step,fr,qm,mm);
/* put the QMMM forces in the force array and to the fshift
*/
for(i=0;i<qm->nrQMatoms;i++){
for(j=0;j<DIM;j++){
f[i][j] = HARTREE_BOHR2MD*QMgrad[i][j];
fshift[i][j] = HARTREE_BOHR2MD*QMgrad[i][j];
}
}
for(i=0;i<mm->nrMMatoms;i++){
for(j=0;j<DIM;j++){
f[i+qm->nrQMatoms][j] = HARTREE_BOHR2MD*MMgrad[i][j];
fshift[i+qm->nrQMatoms][j] = HARTREE_BOHR2MD*MMgrad[i][j];
}
}
QMener = QMener*HARTREE2KJ*AVOGADRO;
step++;
free(exe);
return(QMener);
} /* call_orca */
/* end of orca sub routines */
|