File: gmx_sas.c

package info (click to toggle)
gromacs 4.5.5-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 79,700 kB
  • sloc: asm: 789,508; ansic: 424,578; fortran: 94,172; sh: 10,808; makefile: 2,170; cpp: 1,169; csh: 708; perl: 687; python: 264
file content (658 lines) | stat: -rw-r--r-- 19,721 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
/*
 * 
 *                This source code is part of
 * 
 *                 G   R   O   M   A   C   S
 * 
 *          GROningen MAchine for Chemical Simulations
 * 
 *                        VERSION 3.3.2
 * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
 * Copyright (c) 2001-2007, The GROMACS development team,
 * check out http://www.gromacs.org for more information.

 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 * 
 * If you want to redistribute modifications, please consider that
 * scientific software is very special. Version control is crucial -
 * bugs must be traceable. We will be happy to consider code for
 * inclusion in the official distribution, but derived work must not
 * be called official GROMACS. Details are found in the README & COPYING
 * files - if they are missing, get the official version at www.gromacs.org.
 * 
 * To help us fund GROMACS development, we humbly ask that you cite
 * the papers on the package - you can find them in the top README file.
 * 
 * For more info, check our website at http://www.gromacs.org
 * 
 * And Hey:
 * Groningen Machine for Chemical Simulation
 */
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <math.h>
#include <stdlib.h>

#include "sysstuff.h"
#include "string.h"
#include "typedefs.h"
#include "smalloc.h"
#include "macros.h"
#include "vec.h"
#include "xvgr.h"
#include "pbc.h"
#include "copyrite.h"
#include "futil.h"
#include "statutil.h"
#include "index.h"
#include "nsc.h"
#include "pdbio.h"
#include "confio.h"
#include "rmpbc.h"
#include "names.h"
#include "atomprop.h"
#include "physics.h"
#include "tpxio.h"
#include "gmx_ana.h"


typedef struct {
  atom_id  aa,ab;
  real     d2a,d2b;
} t_conect;

void add_rec(t_conect c[],atom_id i,atom_id j,real d2)
{
  if (c[i].aa == NO_ATID) {
    c[i].aa  = j;
    c[i].d2a = d2;
  }
  else if (c[i].ab == NO_ATID) {
    c[i].ab  = j;
    c[i].d2b = d2;
  }
  else if (d2 < c[i].d2a) {
    c[i].aa  = j;
    c[i].d2a = d2;
  }
  else if (d2 < c[i].d2b) {
    c[i].ab  = j;
    c[i].d2b = d2;
  }
  /* Swap them if necessary: a must be larger than b */
  if (c[i].d2a < c[i].d2b) {
    j        = c[i].ab;
    c[i].ab  = c[i].aa;
    c[i].aa  = j;
    d2       = c[i].d2b;
    c[i].d2b = c[i].d2a;
    c[i].d2a = d2;
  }
}

void do_conect(const char *fn,int n,rvec x[])
{
  FILE     *fp;
  int      i,j;
  t_conect *c;
  rvec     dx;
  real     d2;
  
  fprintf(stderr,"Building CONECT records\n");
  snew(c,n);
  for(i=0; (i<n); i++) 
    c[i].aa = c[i].ab = NO_ATID;
  
  for(i=0; (i<n); i++) {
    for(j=i+1; (j<n); j++) {
      rvec_sub(x[i],x[j],dx);
      d2 = iprod(dx,dx);
      add_rec(c,i,j,d2);
      add_rec(c,j,i,d2);
    }
  }
  fp = ffopen(fn,"a");
  for(i=0; (i<n); i++) {
    if ((c[i].aa == NO_ATID) || (c[i].ab == NO_ATID))
      fprintf(stderr,"Warning dot %d has no conections\n",i+1);
    fprintf(fp,"CONECT%5d%5d%5d\n",i+1,c[i].aa+1,c[i].ab+1);
  }
  ffclose(fp);
  sfree(c);
}

void connelly_plot(const char *fn,int ndots,real dots[],rvec x[],t_atoms *atoms,
		   t_symtab *symtab,int ePBC,matrix box,gmx_bool bSave)
{
  static const char *atomnm="DOT";
  static const char *resnm ="DOT";
  static const char *title ="Connely Dot Surface Generated by g_sas";

  int  i,i0,r0,ii0,k;
  rvec *xnew;
  t_atoms aaa;

  if (bSave) {  
    i0 = atoms->nr;
    r0 = atoms->nres;
    srenew(atoms->atom,atoms->nr+ndots);
    srenew(atoms->atomname,atoms->nr+ndots);
    srenew(atoms->resinfo,r0+1);
    atoms->atom[i0].resind = r0;
    t_atoms_set_resinfo(atoms,i0,symtab,resnm,r0+1,' ',0,' ');
    srenew(atoms->pdbinfo,atoms->nr+ndots);
    snew(xnew,atoms->nr+ndots);
    for(i=0; (i<atoms->nr); i++)
      copy_rvec(x[i],xnew[i]);
    for(i=k=0; (i<ndots); i++) {
      ii0 = i0+i;
      atoms->atomname[ii0] = put_symtab(symtab,atomnm);
      atoms->pdbinfo[ii0].type = epdbATOM;
      atoms->pdbinfo[ii0].atomnr= ii0;
      atoms->atom[ii0].resind = r0;
      xnew[ii0][XX] = dots[k++];
      xnew[ii0][YY] = dots[k++];
      xnew[ii0][ZZ] = dots[k++];
      atoms->pdbinfo[ii0].bfac  = 0.0;
      atoms->pdbinfo[ii0].occup = 0.0;
    }
    atoms->nr   = i0+ndots;
    atoms->nres = r0+1;
    write_sto_conf(fn,title,atoms,xnew,NULL,ePBC,box);
    atoms->nres = r0;
    atoms->nr   = i0;
  }
  else {
    init_t_atoms(&aaa,ndots,TRUE);
    aaa.atom[0].resind = 0;
    t_atoms_set_resinfo(&aaa,0,symtab,resnm,1,' ',0,' ');
    snew(xnew,ndots);
    for(i=k=0; (i<ndots); i++) {
      ii0 = i;
      aaa.atomname[ii0] = put_symtab(symtab,atomnm);
      aaa.pdbinfo[ii0].type = epdbATOM;
      aaa.pdbinfo[ii0].atomnr= ii0;
      aaa.atom[ii0].resind = 0;
      xnew[ii0][XX] = dots[k++];
      xnew[ii0][YY] = dots[k++];
      xnew[ii0][ZZ] = dots[k++];
      aaa.pdbinfo[ii0].bfac  = 0.0;
      aaa.pdbinfo[ii0].occup = 0.0;
    }
    aaa.nr = ndots;
    write_sto_conf(fn,title,&aaa,xnew,NULL,ePBC,box);
    do_conect(fn,ndots,xnew);
    free_t_atoms(&aaa,FALSE);
  }
  sfree(xnew);
}

real calc_radius(char *atom)
{
  real r;
  
  switch (atom[0]) {
  case 'C':
    r = 0.16;
    break;
  case 'O':
    r = 0.13;
    break;
  case 'N':
    r = 0.14;
    break;
  case 'S':
    r = 0.2;
    break;
  case 'H':
    r = 0.1;
    break;
  default:
    r = 1e-3;
  }
  return r;
}

void sas_plot(int nfile,t_filenm fnm[],real solsize,int ndots,
	      real qcut,gmx_bool bSave,real minarea,gmx_bool bPBC,
	      real dgs_default,gmx_bool bFindex, const output_env_t oenv)
{
  FILE         *fp,*fp2,*fp3=NULL,*vp;
  const char   *flegend[] = { "Hydrophobic", "Hydrophilic", 
			      "Total", "D Gsolv" };
  const char   *vlegend[] = { "Volume (nm\\S3\\N)", "Density (g/l)" };
  const char   *or_and_oa_legend[] = { "Average (nm\\S2\\N)", "Standard deviation (nm\\S2\\N)" };
  const char   *vfile;
  real         t;
  gmx_atomprop_t aps=NULL;
  gmx_rmpbc_t  gpbc=NULL;
  t_trxstatus  *status;
  int          ndefault;
  int          i,j,ii,nfr,natoms,flag,nsurfacedots,res;
  rvec         *xtop,*x;
  matrix       topbox,box;
  t_topology   top;
  char         title[STRLEN];
  int          ePBC;
  gmx_bool         bTop;
  t_atoms      *atoms;
  gmx_bool         *bOut,*bPhobic;
  gmx_bool         bConnelly;
  gmx_bool         bResAt,bITP,bDGsol;
  real         *radius,*dgs_factor=NULL,*area=NULL,*surfacedots=NULL;
  real         at_area,*atom_area=NULL,*atom_area2=NULL;
  real         *res_a=NULL,*res_area=NULL,*res_area2=NULL;
  real         totarea,totvolume,totmass=0,density,harea,tarea,fluc2;
  atom_id      **index,*findex;
  int          *nx,nphobic,npcheck,retval;
  char         **grpname,*fgrpname;
  real         dgsolv;

  bITP   = opt2bSet("-i",nfile,fnm);
  bResAt = opt2bSet("-or",nfile,fnm) || opt2bSet("-oa",nfile,fnm) || bITP;

  bTop = read_tps_conf(ftp2fn(efTPS,nfile,fnm),title,&top,&ePBC,
		       &xtop,NULL,topbox,FALSE);
  atoms = &(top.atoms);
  
  if (!bTop) {
    fprintf(stderr,"No tpr file, will not compute Delta G of solvation\n");
    bDGsol = FALSE;
  } else {
    bDGsol = strcmp(*(atoms->atomtype[0]),"?") != 0;
    if (!bDGsol) {
      fprintf(stderr,"Warning: your tpr file is too old, will not compute "
	      "Delta G of solvation\n");
    } else {
      printf("In case you use free energy of solvation predictions:\n");
      please_cite(stdout,"Eisenberg86a");
    }
  }

  aps = gmx_atomprop_init();
  
  if ((natoms=read_first_x(oenv,&status,ftp2fn(efTRX,nfile,fnm),
			   &t,&x,box))==0)
    gmx_fatal(FARGS,"Could not read coordinates from statusfile\n");

  if ((ePBC != epbcXYZ) || (TRICLINIC(box))) {
    fprintf(stderr,"\n\nWARNING: non-rectangular boxes may give erroneous results or crashes.\n"
	    "Analysis based on vacuum simulations (with the possibility of evaporation)\n" 
	    "will certainly crash the analysis.\n\n");
  }
  snew(nx,2);
  snew(index,2);
  snew(grpname,2);
  fprintf(stderr,"Select a group for calculation of surface and a group for output:\n");
  get_index(atoms,ftp2fn_null(efNDX,nfile,fnm),2,nx,index,grpname);

  if (bFindex) {
    fprintf(stderr,"Select a group of hydrophobic atoms:\n");
    get_index(atoms,ftp2fn_null(efNDX,nfile,fnm),1,&nphobic,&findex,&fgrpname);
  }
  snew(bOut,natoms);
  for(i=0; i<nx[1]; i++)
    bOut[index[1][i]] = TRUE;

  /* Now compute atomic readii including solvent probe size */
  snew(radius,natoms);
  snew(bPhobic,nx[0]);
  if (bResAt) {
    snew(atom_area,nx[0]);
    snew(atom_area2,nx[0]);
    snew(res_a,atoms->nres);
    snew(res_area,atoms->nres);
    snew(res_area2,atoms->nres);
  }
  if (bDGsol)
    snew(dgs_factor,nx[0]);

  /* Get a Van der Waals radius for each atom */
  ndefault = 0;
  for(i=0; (i<natoms); i++) {
    if (!gmx_atomprop_query(aps,epropVDW,
			    *(atoms->resinfo[atoms->atom[i].resind].name),
			    *(atoms->atomname[i]),&radius[i]))
      ndefault++;
    /* radius[i] = calc_radius(*(top->atoms.atomname[i])); */
    radius[i] += solsize;
  }
  if (ndefault > 0)
    fprintf(stderr,"WARNING: could not find a Van der Waals radius for %d atoms\n",ndefault);
  /* Determine which atom is counted as hydrophobic */
  if (bFindex) {
    npcheck = 0;
    for(i=0; (i<nx[0]); i++) {
      ii = index[0][i];
      for(j=0; (j<nphobic); j++) {
	if (findex[j] == ii) {
	  bPhobic[i] = TRUE;
	  if (bOut[ii])
	    npcheck++;
	}
      }
    }
    if (npcheck != nphobic)
      gmx_fatal(FARGS,"Consistency check failed: not all %d atoms in the hydrophobic index\n"
		  "found in the normal index selection (%d atoms)",nphobic,npcheck);
  }
  else
    nphobic = 0;
    
  for(i=0; (i<nx[0]); i++) {
    ii = index[0][i];
    if (!bFindex) {
      bPhobic[i] = fabs(atoms->atom[ii].q) <= qcut;
      if (bPhobic[i] && bOut[ii])
	nphobic++;
    }
    if (bDGsol)
      if (!gmx_atomprop_query(aps,epropDGsol,
			      *(atoms->resinfo[atoms->atom[ii].resind].name),
			      *(atoms->atomtype[ii]),&(dgs_factor[i])))
	dgs_factor[i] = dgs_default;
    if (debug)
      fprintf(debug,"Atom %5d %5s-%5s: q= %6.3f, r= %6.3f, dgsol= %6.3f, hydrophobic= %s\n",
	      ii+1,*(atoms->resinfo[atoms->atom[ii].resind].name),
	      *(atoms->atomname[ii]),
	      atoms->atom[ii].q,radius[ii]-solsize,dgs_factor[i],
	      BOOL(bPhobic[i]));
  }
  fprintf(stderr,"%d out of %d atoms were classified as hydrophobic\n",
	  nphobic,nx[1]);
  
  fp=xvgropen(opt2fn("-o",nfile,fnm),"Solvent Accessible Surface","Time (ps)",
	      "Area (nm\\S2\\N)",oenv);
  xvgr_legend(fp,asize(flegend) - (bDGsol ? 0 : 1),flegend,oenv);
  vfile = opt2fn_null("-tv",nfile,fnm);
  if (vfile) {
    if (!bTop) {
      gmx_fatal(FARGS,"Need a tpr file for option -tv");
    }
    vp=xvgropen(vfile,"Volume and Density","Time (ps)","",oenv);
    xvgr_legend(vp,asize(vlegend),vlegend,oenv);
    totmass  = 0;
    ndefault = 0;
    for(i=0; (i<nx[0]); i++) {
      real mm;
      ii = index[0][i];
      /*
      if (!query_atomprop(atomprop,epropMass,
			  *(top->atoms.resname[top->atoms.atom[ii].resnr]),
			  *(top->atoms.atomname[ii]),&mm))
	ndefault++;
      totmass += mm;
      */
      totmass += atoms->atom[ii].m;
    }
    if (ndefault)
      fprintf(stderr,"WARNING: Using %d default masses for density calculation, which most likely are inaccurate\n",ndefault);
  }
  else
    vp = NULL;
    
  gmx_atomprop_destroy(aps);

  if (bPBC)
    gpbc = gmx_rmpbc_init(&top.idef,ePBC,natoms,box);
  
  nfr=0;
  do {
    if (bPBC)
      gmx_rmpbc(gpbc,natoms,box,x);
    
    bConnelly = (nfr==0 && opt2bSet("-q",nfile,fnm));
    if (bConnelly) {
      if (!bTop)
	gmx_fatal(FARGS,"Need a tpr file for Connelly plot");
      flag = FLAG_ATOM_AREA | FLAG_DOTS;
    } else {
      flag = FLAG_ATOM_AREA;
    }
    if (vp) {
      flag = flag | FLAG_VOLUME;
    }
      
    if (debug)
      write_sto_conf("check.pdb","pbc check",atoms,x,NULL,ePBC,box);

    retval = nsc_dclm_pbc(x,radius,nx[0],ndots,flag,&totarea,
			  &area,&totvolume,&surfacedots,&nsurfacedots,
			  index[0],ePBC,bPBC ? box : NULL);
    if (retval)
      gmx_fatal(FARGS,"Something wrong in nsc_dclm_pbc");
    
    if (bConnelly)
      connelly_plot(ftp2fn(efPDB,nfile,fnm),
		    nsurfacedots,surfacedots,x,atoms,
		    &(top.symtab),ePBC,box,bSave);
    harea  = 0; 
    tarea  = 0;
    dgsolv = 0;
    if (bResAt)
      for(i=0; i<atoms->nres; i++)
	res_a[i] = 0;
    for(i=0; (i<nx[0]); i++) {
      ii = index[0][i];
      if (bOut[ii]) {
	at_area = area[i];
	if (bResAt) {
	  atom_area[i] += at_area;
	  atom_area2[i] += sqr(at_area);
	  res_a[atoms->atom[ii].resind] += at_area;
	}
	tarea += at_area;
	if (bDGsol)
	  dgsolv += at_area*dgs_factor[i];
	if (bPhobic[i])
	  harea += at_area;
      }
    }
    if (bResAt)
      for(i=0; i<atoms->nres; i++) {
	res_area[i] += res_a[i];
	res_area2[i] += sqr(res_a[i]);
      }
    fprintf(fp,"%10g  %10g  %10g  %10g",t,harea,tarea-harea,tarea);
    if (bDGsol)
      fprintf(fp,"  %10g\n",dgsolv);
    else
      fprintf(fp,"\n");
    
    /* Print volume */
    if (vp) {
      density = totmass*AMU/(totvolume*NANO*NANO*NANO);
      fprintf(vp,"%12.5e  %12.5e  %12.5e\n",t,totvolume,density);
    }
    if (area) {
      sfree(area);
      area = NULL;
    }
    if (surfacedots) {
      sfree(surfacedots);
      surfacedots = NULL;
    }
    nfr++;
  } while (read_next_x(oenv,status,&t,natoms,x,box));

  if (bPBC)  
    gmx_rmpbc_done(gpbc);

  fprintf(stderr,"\n");
  close_trj(status);
  ffclose(fp);
  if (vp)
    ffclose(vp);
    
  /* if necessary, print areas per atom to file too: */
  if (bResAt) {
    for(i=0; i<atoms->nres; i++) {
      res_area[i] /= nfr;
      res_area2[i] /= nfr;
    }
    for(i=0; i<nx[0]; i++) {
      atom_area[i] /= nfr;
      atom_area2[i] /= nfr;
    }
    fprintf(stderr,"Printing out areas per atom\n");
    fp  = xvgropen(opt2fn("-or",nfile,fnm),"Area per residue over the trajectory","Residue",
		   "Area (nm\\S2\\N)",oenv);
    xvgr_legend(fp, asize(or_and_oa_legend),or_and_oa_legend,oenv);
    fp2 = xvgropen(opt2fn("-oa",nfile,fnm),"Area per atom over the trajectory","Atom #",
		   "Area (nm\\S2\\N)",oenv);
    xvgr_legend(fp2, asize(or_and_oa_legend),or_and_oa_legend,oenv);
    if (bITP) {
      fp3 = ftp2FILE(efITP,nfile,fnm,"w");
      fprintf(fp3,"[ position_restraints ]\n"
	      "#define FCX 1000\n"
	      "#define FCY 1000\n"
	      "#define FCZ 1000\n"
	      "; Atom  Type  fx   fy   fz\n");
    }
    for(i=0; i<nx[0]; i++) {
      ii = index[0][i];
      res = atoms->atom[ii].resind;
      if (i==nx[0]-1 || res!=atoms->atom[index[0][i+1]].resind) {
	fluc2 = res_area2[res]-sqr(res_area[res]);
	if (fluc2 < 0)
	  fluc2 = 0;
	fprintf(fp,"%10d  %10g %10g\n",
		atoms->resinfo[res].nr,res_area[res],sqrt(fluc2));
      }
      fluc2 = atom_area2[i]-sqr(atom_area[i]);
      if (fluc2 < 0)
	fluc2 = 0;
      fprintf(fp2,"%d %g %g\n",index[0][i]+1,atom_area[i],sqrt(fluc2));
      if (bITP && (atom_area[i] > minarea))
	fprintf(fp3,"%5d   1     FCX  FCX  FCZ\n",ii+1);
    }
    if (bITP)
      ffclose(fp3);
    ffclose(fp);
  }

    /* Be a good citizen, keep our memory free! */
    sfree(x);
    sfree(nx);
    for(i=0;i<2;i++)
    {
        sfree(index[i]);
        sfree(grpname[i]);
    }
    sfree(bOut);
    sfree(radius);
    sfree(bPhobic);
    
    if(bResAt)
    {
        sfree(atom_area);
        sfree(atom_area2);
        sfree(res_a);
        sfree(res_area);
        sfree(res_area2);
    }
    if(bDGsol)
    {
        sfree(dgs_factor);
    }
}

int gmx_sas(int argc,char *argv[])
{
  const char *desc[] = {
    "[TT]g_sas[tt] computes hydrophobic, hydrophilic and total solvent",
    "accessible surface area. See Eisenhaber F, Lijnzaad P, Argos P,",
    "Sander C, & Scharf M (1995) J. Comput. Chem. 16, 273-284.",
    "As a side effect, the Connolly surface can be generated as well in",
    "a [TT].pdb[tt] file where the nodes are represented as atoms and the",
    "vertice connecting the nearest nodes as CONECT records.",
    "The program will ask for a group for the surface calculation",
    "and a group for the output. The calculation group should always",
    "consists of all the non-solvent atoms in the system.",
    "The output group can be the whole or part of the calculation group.",
    "The average and standard deviation of the area over the trajectory can be plotted",
    "per residue and atom as well (options [TT]-or[tt] and [TT]-oa[tt]).",
    "In combination with the latter option an [TT].itp[tt] file can be",
    "generated (option [TT]-i[tt])",
    "which can be used to restrain surface atoms.[PAR]",

    "By default, periodic boundary conditions are taken into account,",
    "this can be turned off using the [TT]-nopbc[tt] option.[PAR]",

    "With the [TT]-tv[tt] option the total volume and density of the",
    "molecule can be computed.",
    "Please consider whether the normal probe radius is appropriate",
    "in this case or whether you would rather use e.g. 0. It is good",
    "to keep in mind that the results for volume and density are very",
    "approximate. For example, in ice Ih, one can easily fit water molecules in the",
    "pores which would yield a volume that is too low, and surface area and density",
    "that are both too high."
  };

  output_env_t oenv;
  static real solsize = 0.14;
  static int  ndots   = 24;
  static real qcut    = 0.2;
  static real minarea = 0.5, dgs_default=0;
  static gmx_bool bSave   = TRUE,bPBC=TRUE,bFindex=FALSE;
  t_pargs pa[] = {
    { "-probe", FALSE, etREAL, {&solsize},
      "Radius of the solvent probe (nm)" },
    { "-ndots",   FALSE, etINT,  {&ndots},
      "Number of dots per sphere, more dots means more accuracy" },
    { "-qmax",    FALSE, etREAL, {&qcut},
      "The maximum charge (e, absolute value) of a hydrophobic atom" },
    { "-f_index", FALSE, etBOOL, {&bFindex},
      "Determine from a group in the index file what are the hydrophobic atoms rather than from the charge" },
    { "-minarea", FALSE, etREAL, {&minarea},
      "The minimum area (nm^2) to count an atom as a surface atom when writing a position restraint file  (see help)" },
    { "-pbc",     FALSE, etBOOL, {&bPBC},
      "Take periodicity into account" },
    { "-prot",    FALSE, etBOOL, {&bSave},
      "Output the protein to the Connelly [TT].pdb[tt] file too" },
    { "-dgs",     FALSE, etREAL, {&dgs_default},
      "Default value for solvation free energy per area (kJ/mol/nm^2)" }
  };
  t_filenm  fnm[] = {
    { efTRX, "-f",   NULL,       ffREAD },
    { efTPS, "-s",   NULL,       ffREAD },
    { efXVG, "-o",   "area",     ffWRITE },
    { efXVG, "-or",  "resarea",  ffOPTWR },
    { efXVG, "-oa",  "atomarea", ffOPTWR },
    { efXVG, "-tv",  "volume",   ffOPTWR },
    { efPDB, "-q",   "connelly", ffOPTWR },
    { efNDX, "-n",   "index",    ffOPTRD },
    { efITP, "-i",   "surfat",   ffOPTWR }
  };
#define NFILE asize(fnm)

  CopyRight(stderr,argv[0]);
  parse_common_args(&argc,argv,PCA_CAN_VIEW | PCA_CAN_TIME | PCA_BE_NICE,
		    NFILE,fnm,asize(pa),pa,asize(desc),desc,0,NULL,&oenv);
  if (solsize < 0) {
    solsize=1e-3;
    fprintf(stderr,"Probe size too small, setting it to %g\n",solsize);
  }
  if (ndots < 20) {
    ndots = 20;
    fprintf(stderr,"Ndots too small, setting it to %d\n",ndots);
  }

  please_cite(stderr,"Eisenhaber95");
    
  sas_plot(NFILE,fnm,solsize,ndots,qcut,bSave,minarea,bPBC,dgs_default,bFindex,
          oenv);
  
  do_view(oenv,opt2fn("-o",NFILE,fnm),"-nxy");
  do_view(oenv,opt2fn_null("-or",NFILE,fnm),"-nxy");
  do_view(oenv,opt2fn_null("-oa",NFILE,fnm),"-nxy");

  thanx(stderr);
  
  return 0;
}