1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
|
.. -*- rst -*-
.. groonga-command
.. database: commands_column_create
``column_create``
=================
Summary
-------
``column_create`` creates a new column in a table.
You need to create one or more columns to store multiple data in one
record.
Groonga provides an index as a column. It's different from other
systems. An index is just an index in other systems. Implementing an
index as a column provides flexibility. For example, you can add
metadata to each token.
See :doc:`/reference/column` for column details.
Syntax
------
This command takes many parameters.
Most parameters are required::
column_create table
name
flags
type
[source=null]
[path=null]
[generator=null]
Usage
-----
This section describes about the followings:
* :ref:`column-create-scalar`
* :ref:`column-create-vector`
* :ref:`column-create-vector-weight`
* :ref:`column-create-reference`
* :ref:`column-create-index`
* :ref:`column-create-index-full-text-search`
* :ref:`column-create-index-multiple-columns`
* :ref:`column-create-index-small`
* :ref:`column-create-index-medium`
* :ref:`column-create-index-large`
* :ref:`column-create-missing-mode`
* :ref:`column-create-invalid-mode`
* :ref:`column-create-generated-column`
Here is the ``People`` table definition. The ``People`` table is used
in examples:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_table.log
.. table_create \
.. --name People \
.. --flags TABLE_HASH_KEY \
.. --key_type ShortText
.. _column-create-scalar:
Create a scalar column
^^^^^^^^^^^^^^^^^^^^^^
Groonga provides scalar column to store one value. For example, scalar
column should be used for storing age into a person record. Because a
person record must have only one age.
If you want to store multiple values into a record, scalar column
isn't suitable. Use :ref:`column-create-vector` instead.
You must specify ``COLUMN_SCALAR`` to the ``flags`` parameter to
create a scalar column.
Here is an example to create the ``age`` column to the ``People``
table. ``age`` column is a scalar column. It can store one ``UInt8``
(``0-255``) value as its value:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_scalar_create.log
.. column_create \
.. --table People \
.. --name age \
.. --flags COLUMN_SCALAR \
.. --type UInt8
You can store one value (``7``) by the following :doc:`load` command:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_scalar_load.log
.. load --table People
.. [
.. {"_key": "alice", "age": 7}
.. ]
You can confirm the stored one value (``7``) by the following
:doc:`select` command:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_scalar_select.log
.. select --table People
.. _column-create-vector:
Create a vector column
^^^^^^^^^^^^^^^^^^^^^^
Groonga provides vector column to store multiple values. For example,
vector column may be used for storing roles into a person
record. Because a person record may have multiple roles.
If you want to store only one value into a record, vector column isn't
suitable. Use :ref:`column-create-scalar` instead.
You must specify ``COLUMN_VECTOR`` to the ``flags`` parameter to
create a vector column.
Here is an example to create the ``roles`` column to the ``People``
table. ``roles`` column is a vector column. It can store zero or more
``ShortText`` values as its value:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_vector_create.log
.. column_create \
.. --table People \
.. --name roles \
.. --flags COLUMN_VECTOR \
.. --type ShortText
You can store multiple values (``["adventurer", "younger-sister"]``)
by the following :doc:`load` command:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_vector_load.log
.. load --table People
.. [
.. {"_key": "alice", "roles": ["adventurer", "younger-sister"]}
.. ]
You can confirm the stored multiple values (``["adventurer",
"younger-sister"]``) by the following :doc:`select` command:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_vector_select.log
.. select --table People
.. _column-create-vector-weight:
Create a weight vector column
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TODO: See also :ref:`weight-vector-column` and :ref:`select-adjuster`.
.. _column-create-reference:
Create a column that refers a table's record
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Both scalar column and vector column can store reference to record of
an existing table as column value. It's useful to store relationship
between records.
For example, using a column that refers a person record is better for
storing a character into a book record. Because one person may be
appeared in some books.
You must specify table name to be referenced to the ``type`` parameter
to create a column that refers a table's record.
Here is an example to create the ``character`` column to the ``Books``
table. The ``character`` column refers the ``People`` table. It can
store one ``People`` table's record.
Here is the ``Books`` table definition:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_reference_create_table.log
.. table_create \
.. --name Books \
.. --flags TABLE_HASH_KEY \
.. --key_type ShortText
Here is the ``character`` column definition in the ``Books``
table. ``--type People`` is important:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_reference_create_column.log
.. column_create \
.. --table Books \
.. --name character \
.. --flags COLUMN_SCALAR \
.. --type People
You can store one reference (``"alice"``) by the following :doc:`load`
command. You can use key value (``People._key`` value) for referring a
record:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_reference_load.log
.. load --table Books
.. [
.. {"_key": "Alice's Adventure in Wonderland", "character": "alice"}
.. ]
You can confirm the stored reference (``"alice"`` record) by the
following :doc:`select` command. It retrieves the ``age`` column and
the ``roles`` column values:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_reference_select.log
.. select \
.. --table Books \
.. --output_columns _key,character._key,character.age,character.roles
.. _column-create-index:
Create an index column
^^^^^^^^^^^^^^^^^^^^^^
Groonga provides index column for fast search. It doesn't store your
data. It stores data for fast search.
You don't need to update index column by yourself. Index column is
updated automatically when you store data into a data column (scalar
column or vector column) that is marked as index target column. You
can set multiple columns as index target columns to one index column.
If you make a new index, it is invisible until finishing of index build.
If Groonga has an index column for the ``age`` column of the
``People`` table, Groonga can do fast equal search, fast comparison
search and fast range search against ``age`` column values.
You must specify the following parameters to create an index column:
* The ``flags`` parameter: ``COLUMN_INDEX``
* The ``type`` parameter: The table name of index target column such
as ``People``
* The ``source`` parameter: The index target column name such as
``age``
You don't need additional flags to the ``flags`` parameter for equal
search, comparison search and range search index column. You need
additional flags to the ``flags`` parameter for full text search index
column or multiple column index column. See
:ref:`column-create-index-full-text-search` and
:ref:`column-create-index-multiple-columns` for details.
Here is an example to create an index column for the ``age`` column of
the ``People`` table.
First, you need to create a table for range index column. See
:ref:`table-create-range-index-table` for details. This example
creates the ``Ages`` table as :ref:`table-pat-key`:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_index_create_table.log
.. table_create \
.. --name Ages \
.. --flags TABLE_PAT_KEY \
.. --key_type UInt8
Now, you can create an index column for the ``age`` column of the
``People`` table. ``COLUMN_INDEX`` in the ``flags`` parameter,
``People`` in the ``type`` parameter and ``age`` in the ``source``
parameter are important:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_index_create_column.log
.. column_create \
.. --table Ages \
.. --name people_age_index \
.. --flags COLUMN_INDEX \
.. --type People \
.. --source age
You can confirm that ``age > 5`` is evaluated by the
``Ages.people_age_index`` newly created index column from log. Groonga
reports used index columns in ``info`` log level. You can change log
level dynamically by :doc:`log_level` command.
.. groonga-command
.. log: true
.. include:: ../../example/reference/commands/column_create/usage_index_select.log
.. log_level --level info
.. select \
.. --table People \
.. --filter 'age > 5'
.. log_level --level notice
.. log: false
You can confirm that the ``Ages.people_age_index`` is used from the
following log::
[table][select][index][range] <Ages.people_age_index>
The log says ``Ages.people_age_index`` index column is used for range
search.
.. _column-create-index-full-text-search:
Create an index column for full text search
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
There is a difference between for non full text search (equal search,
comparison search or range search) index column and for full text
search index column. You need to add ``WITH_POSITION`` to the
``flags`` parameter. It means that you need to specify
``COLUMN_INDEX|WITH_POSITION`` to the ``flags`` parameter. It's the
difference.
Here is an example to create a full text search index column for the
key of the ``People`` table.
First, you need to create a table for full text search index
column. See :ref:`table-create-lexicon` for details. This example
creates the ``Terms`` table as :ref:`table-pat-key` with
:ref:`token-bigram` tokenizer and :ref:`normalizer-auto` normalizer:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_full_text_search_index_create_table.log
.. table_create \
.. --name Terms \
.. --flags TABLE_PAT_KEY \
.. --key_type ShortText \
.. --default_tokenizer TokenBigram \
.. --normalizer NormalizerAuto
Now, you can create a full text search index column for the key of the
``People`` table. ``COLUMN_INDEX|WITH_POSITION`` in the ``flags``
parameter, ``People`` in the ``type`` parameter and ``_key`` in the
``source`` parameter are important:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_full_text_search_index_create_column.log
.. column_create \
.. --table Terms \
.. --name people_key_index \
.. --flags COLUMN_INDEX|WITH_POSITION \
.. --type People \
.. --source _key
You can confirm that ``--match_columns _key`` and ``--query Alice``
are evaluated by the ``Terms.people_key_index`` newly created full
text search index column from log. Groonga reports used index columns
in ``info`` log level. You can change log level dynamically by
:doc:`log_level` command.
.. groonga-command
.. log: true
.. include:: ../../example/reference/commands/column_create/usage_full_text_search_index_select.log
.. log_level --level info
.. select \
.. --table People \
.. --match_columns _key \
.. --query Alice
.. log_level --level notice
.. log: false
You can confirm that the ``Terms.people_key_index`` is used from the
following log::
[object][search][index][key][exact] <Terms.people_key_index>
The log says ``Terms.people_key_index`` index column is used for full
text search. (To be precise, the index column is used for exact term
search by inverted index.)
.. _column-create-index-multiple-columns:
Create a multiple columns index column
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You can create an index column for multiple columns. It means that you
can do fast search for multiple columns with one index
column. Multiple columns index column has better space efficiency than
single column index column only when multiple columns have many same
tokens. Multiple columns index column may be slower than single column
index column. Because multiple columns index column will be a bigger
index column.
You can't use multiples columns in different tables as index target
columns in the same multiple columns index column. You must specify
columns in the same tables as index target columns to one multiple
columns index column. For example, you can't create a multiple columns
index for ``People._key`` and ``Books._key`` because they are columns
of different tables. You can create a multiple columns index column
for ``People._key`` and ``People.roles`` because they are columns of
the same table.
There is a difference between for single column index column and for
multiple columns index column. You need to add ``WITH_SECTION`` to the
``flags`` parameter. It means that you need to specify
``COLUMN_INDEX|WITH_SECTION`` to the ``flags`` parameter. It's the
difference.
If you want to create a multiple columns index column for full text
search, you need to specify
``COLUMN_INDEX|WITH_POSITION|WITH_SECTION`` to the ``flags``
parameter. See :ref:`column-create-index-full-text-search` for full
text search index column details.
Here is an example to create a multiple columns index column for the
key of the ``People`` table and the ``roles`` column of the ``People``
table.
There is no difference between index table for single column index
column and multiple columns index column.
In this example, ``Names`` table is created for equal search and
prefix search. It uses ``TABLE_PAT_KEY`` because ``TABLE_PAT_KEY``
supports prefix search. See :doc:`../tables` for details.
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_multiple_columns_index_create_table.log
.. table_create \
.. --name Names \
.. --flags TABLE_PAT_KEY \
.. --key_type ShortText \
.. --normalizer NormalizerAuto
You can create a multiple columns index column for the key of the
``People`` table and ``roles`` column of the ``People``
table. ``COLUMN_INDEX|WITH_SECTION`` in the ``flags`` parameter,
``People`` in the ``type`` parameter and ``_key,roles`` in the
``source`` parameter are important:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_multiple_columns_index_create_column.log
.. column_create \
.. --table Names \
.. --name people_key_roles_index \
.. --flags COLUMN_INDEX|WITH_SECTION \
.. --type People \
.. --source _key,roles
You can confirm that ``--filter 'roles @^ "Younger"`` is evaluated by
the ``Names.people_key_roles_index`` newly created multiple columns
index column from log. Groonga reports used index columns in ``info``
log level. You can change log level dynamically by :doc:`log_level`
command.
.. groonga-command
.. log: true
.. include:: ../../example/reference/commands/column_create/usage_multiple_columns_index_select.log
.. log_level --level info
.. select \
.. --table People \
.. --filter 'roles @^ "Younger"'
.. log_level --level notice
.. log: false
You can confirm that the ``Names.people_key_roles_index`` is used from
the following log::
[table][select][index][prefix] <Names.people_key_roles_index>
The log says ``Names.people_key_roles_index`` index column is used for
prefix search.
.. _column-create-index-small:
Create a small index column
^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you know index target data are small, you can reduce memory usage
for the index column. Memory usage is ``1/256`` of the default index
column.
How many data are small? It depends on data. Small index column can't
handle 1 billion records at least. If index target is only one
scalar column with no text family type (``ShortText``, ``Text`` or
``LongText``), the maximum handleable records are depends of the
number of kinds of index target data. If index target column has
``1``, ``1``, ``2`` and ``3``, the number of kinds of them are ``3``
(``1`` and ``2`` and ``3``). The following table shows the
relationship between the number of kinds of index target data and the
number of handleable records:
.. list-table:: The number of kinds of index target data and the number of handleable records in a small index column
:header-rows: 1
* - The number of kinds of index target data
- The number of hanleable records
* - 1
- 16779234
* - 2
- 4648070
* - 4
- 7238996
* - 8
- 8308622
* - 16
- 11068624
* - 32
- 12670817
* - 64
- 18524211
* - 128
- 38095511
* - 256
- 51265384
You need to add ``INDEX_SMALL`` to the ``flags`` parameter such as
``COLUMN_INDEX|INDEX_SMALL`` to create a small index column.
If the ``People`` table has only 1 million records, you can use a
small index column for the ``age`` column:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_small_index_create_column.log
.. column_create \
.. --table Ages \
.. --name people_age_small_index \
.. --flags COLUMN_INDEX|INDEX_SMALL \
.. --type People \
.. --source age
.. _column-create-index-medium:
Create a medium index column
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you know index target data are medium, you can reduce memory usage
for the index column. Memory usage is ``5/24`` of the default index
column.
How many data are medium? It depends on data.
If index target is only one scalar column, a medium index column
can handle all records.
A medium index column may not handle all records at the following
cases:
* Index target is one text family (``ShortText``, ``Text`` or
``LongText``) scalar column
* Index target is one vector column
* Index targets are multiple columns
* Index table has tokenizer
You need to add ``INDEX_MEDIUM`` to the ``flags`` parameter such as
``COLUMN_INDEX|INDEX_MEDIUM`` to create a medium index column.
You can use a medium index column for an index column of the ``age``
column of the ``People`` table safely. Because it's one scalar column
with ``UInt8`` type.
Here is an example to create a medium index column:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_medium_index_create_column.log
.. column_create \
.. --table Ages \
.. --name people_age_medium_index \
.. --flags COLUMN_INDEX|INDEX_MEDIUM \
.. --type People \
.. --source age
.. _column-create-index-large:
Create a large index column
^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you know index target data are large, you need to use large index
column. It uses increases memory usage for the index column but it can
accept more data. Memory usage is 2 times larger than the default
index column.
How many data are large? It depends on data.
If index target is only one scalar column, it's not large data.
Large data must have many records (normally at least 10 millions
records) and at least one of the following features:
* Index targets are multiple columns
* Index table has tokenizer
You need to add ``INDEX_LARGE`` to the ``flags`` parameter such as
``COLUMN_INDEX|INDEX_LARGE`` to create a large index column.
You can use a large index column for an index column of the ``_key``
of the ``People`` table and the ``role`` column of the ``People``
table.
Here is an example to create a large index column:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/usage_large_index_create_column.log
.. column_create \
.. --table Terms \
.. --name people_roles_large_index \
.. --flags COLUMN_INDEX|WITH_POSITION|WITH_SECTION|INDEX_LARGE \
.. --type People \
.. --source roles
.. _column-create-missing-mode:
Missing mode
^^^^^^^^^^^^
.. versionadded:: 12.0.2
You can control how to process a nonexistent key in the specified new
value of a reference column by a ``MISSING_*`` flag. Here are
available ``MISSING_*`` flags:
* ``MISSING_ADD`` (default)
* ``MISSING_IGNORE``
* ``MISSING_NIL``
You can't specify multiple ``MISSING_*`` flags for a column.
``MISSING_*`` flags are meaningful only for a reference column.
The following table describes the differences between ``MISSING_*``
flags when a nonexistent key is specified to a reference scalar
column:
.. list-table::
:header-rows: 1
* - Flag
- Description
- An example given value
- An example set value
* - ``MISSING_ADD``
- The given nonexistent key is added to the referred table
automatically and the ID of the newly added record is set.
This is the default.
- ``"nonexistent"``
- The record ID of the newly added record whose key is
``"nonexistent"``.
* - ``MISSING_IGNORE``
- The given nonexistent key is ignored and ``0`` is set.
There is no difference between ``MISSING_IGNORE`` and
``MISSING_NIL`` for a reference scalar column.
- ``"nonexistent"``
- ``0``
* - ``MISSING_NIL``
- The given nonexistent key is ignored and ``0`` is set.
There is no difference between ``MISSING_IGNORE`` and
``MISSING_NIL`` for a reference scalar column.
- ``"nonexistent"``
- ``0``
Here is an example to show differences between ``MISSING_*`` flags for
a reference scalar column.
First this example defines columns for all ``MISSING_*`` flags:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/missing_mode_scalar_schema.log
.. table_create \
.. --name MissingModeScalarReferred \
.. --flags TABLE_HASH_KEY \
.. --key_type ShortText
.. table_create \
.. --name MissingModeScalar \
.. --flags TABLE_HASH_KEY \
.. --key_type ShortText
.. column_create \
.. --table MissingModeScalar \
.. --name missing_add \
.. --flags COLUMN_SCALAR|MISSING_ADD \
.. --type MissingModeScalarReferred
.. column_create \
.. --table MissingModeScalar \
.. --name missing_ignore \
.. --flags COLUMN_SCALAR|MISSING_IGNORE \
.. --type MissingModeScalarReferred
.. column_create \
.. --table MissingModeScalar \
.. --name missing_nil \
.. --flags COLUMN_SCALAR|MISSING_NIL \
.. --type MissingModeScalarReferred
Then this example loads nonexistent keys to all columns. The specified
nonexistent key for ``MISSING_ADD`` is only added to
``MissingModeScalarReferred`` automatically and the specified
nonexistent keys for ``MISSING_IGNORE`` and ``MISSING_NIL`` aren't
added to ``MissingModeScalarReferred``. ``missing_ignore``'s value and
``missing_nil``'s value are showed as ``""`` because they refer a
record whose ID is ``0`` and record whose ID is ``0`` never exist:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/missing_mode_scalar_load.log
.. load --table MissingModeScalar
.. [
.. {"_key": "key", "missing_add": "nonexistent1"}
.. ]
.. load --table MissingModeScalar
.. [
.. {"_key": "key", "missing_ignore": "nonexistent2"}
.. ]
.. load --table MissingModeScalar
.. [
.. {"_key": "key", "missing_nil": "nonexistent3"}
.. ]
.. select --table MissingModeScalar
.. select --table MissingModeScalarReferred
The following table describes the differences between ``MISSING_*``
flags when a vector value that has a nonexistent key element is
specified to a reference vector column:
.. list-table::
:header-rows: 1
* - Flag
- Description
- An example given value
- An example set value
* - ``MISSING_ADD``
- The given nonexistent key is added to the referred table
automatically and the ID of the newly added record is used for
the element.
This is the default.
- ``["existent1", "nonexistent", "existent2"]``
- The record IDs of ``"existent1"``, ``"nonexistent"`` and
``"existent2"``.
* - ``MISSING_IGNORE``
- The given nonexistent key element is ignored.
- ``["existent1", "nonexistent", "existent2"]``
- The record IDs of ``"existent1"`` and ``"existent2"``.
* - ``MISSING_NIL``
- The given nonexistent key element is ignored.
If ``INVALID_WARN`` or ``INVALID_IGNORE`` are also specified,
the element is replaced with ``0``. If ``INVALID_ERROR`` is
specified or no ``INVALID_*`` are specified, the element is
ignored.
See also :ref:`column-create-invalid-mode`.
- ``["existent1", "nonexistent", "existent2"]``
- The record ID of ``"existent1"`` and ``0`` and the record ID of
``"existent2"`` for ``INVALID_WARN`` and ``INVALID_IGNORE``.
The record IDs of ``"existent1"`` and ``"existent2"`` for
``INVALID_ERROR`` and no ``INVALID_*``.
Here is an example to show differences between ``MISSING_*`` flags for
a reference vector column.
First this example defines columns for all ``MISSING_*`` flags:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/missing_mode_vector_schema.log
.. table_create \
.. --name MissingModeVectorReferred \
.. --flags TABLE_HASH_KEY \
.. --key_type ShortText
.. table_create \
.. --name MissingModeVector \
.. --flags TABLE_HASH_KEY \
.. --key_type ShortText
.. column_create \
.. --table MissingModeVector \
.. --name missing_add \
.. --flags COLUMN_VECTOR|MISSING_ADD \
.. --type MissingModeVectorReferred
.. column_create \
.. --table MissingModeVector \
.. --name missing_ignore \
.. --flags COLUMN_VECTOR|MISSING_IGNORE|INVALID_IGNORE \
.. --type MissingModeVectorReferred
.. column_create \
.. --table MissingModeVector \
.. --name missing_nil \
.. --flags COLUMN_VECTOR|MISSING_NIL|INVALID_IGNORE \
.. --type MissingModeVectorReferred
Then this example loads a vector that includes a nonexistent key to
all columns. The specified nonexistent key for ``MISSING_ADD`` is only
added to ``MissingModeVectorReferred`` automatically and the specified
nonexistent keys for ``MISSING_IGNORE`` and ``MISSING_NIL`` aren't
added to ``MissingModeVectorReferred``. The specified nonexistent key
element is removed from ``missing_ignore``'s value. The specified
nonexistent key element is replaced with ``0`` in ``missing_nil``'s
value because ``INVALID_IGNORE`` is also specified. And the element
replaced with ``0`` is showed as ``""`` because it refers a record
whose ID is ``0`` and record whose ID is ``0`` never exist:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/missing_mode_vector_load.log
.. load --table MissingModeVectorReferred
.. [
.. {"_key": "existent1"},
.. {"_key": "existent2"}
.. ]
.. load --table MissingModeVector
.. [
.. {"_key": "key", "missing_add": ["existent1", "nonexistent1", "existent2"]}
.. ]
.. load --table MissingModeVector
.. [
.. {"_key": "key", "missing_ignore": ["existent1", "nonexistent2", "existent2"]}
.. ]
.. load --table MissingModeVector
.. [
.. {"_key": "key", "missing_nil": ["existent1", "nonexistent3", "existent2"]}
.. ]
.. select --table MissingModeVector
.. select --table MissingModeVectorReferred
.. _column-create-invalid-mode:
Invalid mode
^^^^^^^^^^^^
.. versionadded:: 12.0.2
You can control how to process an invalid value in the specified new
value of a data column by a ``INVALID_*`` flag. Here are available
``INVALID_*`` flags:
* ``INVALID_ERROR`` (default)
* ``INVALID_WARN``
* ``INVALID_IGNORE``
You can't specify multiple ``INVALID_*`` flags for a column.
``INVALID_*`` flags are meaningful only for a ``COLUMN_SCALAR`` column
and a ``COLUMN_VECTOR`` column.
If the target column is a reference column, an invalid value depends
on :ref:`column-create-missing-mode`. If you specify
``MISSING_IGNORE`` or ``MISSING_NIL``, a nonexistent key is an invalid
value. Note that an empty string key and string keys that are empty
strings by normalization aren't an invalid value with all
``MISSING_*`` flags. They are special.
If the target column isn't a reference column, an invalid value
depends on column's value type. For example, ``"invalid"`` is an
invalid value for an ``Int32`` scalar column.
The following table describes the differences between ``INVALID_*``
flags when an invalid value is specified to an ``Int32`` scalar column:
.. list-table::
:header-rows: 1
* - Flag
- Description
- An example given value
- An example set value
* - ``INVALID_ERROR``
- The given invalid value is reported as an error in
:ref:`process-log` and by :doc:`load`.
The given invalid value isn't set.
This is the default.
- ``"invalid"``
- The column isn't updated.
* - ``INVALID_WARN``
- The given invalid value is reported as a warning in
:ref:`process-log`.
The given invalid value is replaced with the default value of
the target scalar column. For example, ``0`` is the default
value for an ``Int32`` scalar column.
- ``"nonexistent"``
- ``0``
* - ``INVALID_IGNORE``
- The given invalid value is ignored.
The given invalid value is replaced with the default value of
the target scalar column. For example, ``0`` is the default
value for an ``Int32`` scalar column.
- ``"invalid"``
- ``0``
Here is an example to show differences between ``INVALID_*`` flags for
an ``Int32`` scalar column.
First this example defines columns for all ``INVALID_*`` flags:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/invalid_mode_scalar_schema.log
.. table_create \
.. --name InvalidModeScalar \
.. --flags TABLE_HASH_KEY \
.. --key_type ShortText
.. column_create \
.. --table InvalidModeScalar \
.. --name invalid_error \
.. --flags COLUMN_SCALAR|INVALID_ERROR \
.. --type Int32
.. column_create \
.. --table InvalidModeScalar \
.. --name invalid_warn \
.. --flags COLUMN_SCALAR|INVALID_WARN \
.. --type Int32
.. column_create \
.. --table InvalidModeScalar \
.. --name invalid_ignore \
.. --flags COLUMN_SCALAR|INVALID_IGNORE \
.. --type Int32
Then this example loads ``29`` as initial values for all columns to
show differences between them on update:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/invalid_mode_scalar_load_initial.log
.. load --table InvalidModeScalar
.. [
.. {
.. "_key": "key",
.. "invalid_error": 29,
.. "invalid_warn": 29,
.. "invalid_ignore": 29
.. }
.. ]
.. select \
.. --table InvalidModeScalar \
.. --output_columns invalid_error,invalid_warn,invalid_ignore
Then this example update existing column values with invalid values.
The specified invalid value is reported as an error by :doc:`load`
only with ``INVALID_ERROR``. And the existing value isn't updated only
with ``INVALID_ERROR``. The existing value is updated with ``0`` with
``INVALID_WARN`` and ``INVALID_IGNORE``. You can't see differences
between ``INVALID_WARN`` and ``INVALID_IGNORE`` with this example but
a warning message is logged in :ref:`process-log` only with
``INVALID_WARN``:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/invalid_mode_scalar_load_update.log
.. load --table InvalidModeScalar
.. [
.. {"_key": "key", "invalid_error": "invalid"},
.. ]
.. load --table InvalidModeScalar
.. [
.. {"_key": "key", "invalid_warn": "invalid"},
.. ]
.. load --table InvalidModeScalar
.. [
.. {"_key": "key", "invalid_ignore": "invalid"},
.. ]
.. select \
.. --table InvalidModeScalar \
.. --output_columns invalid_error,invalid_warn,invalid_ignore
The following table describes the differences between ``INVALID_*``
flags when a vector value that has an invalid element is specified to
an ``Int32`` vector column:
.. list-table::
:header-rows: 1
* - Flag
- Description
- An example given value
- An example set value
* - ``INVALID_ERROR``
- The given invalid element is reported as an error in
:ref:`process-log` but :doc:`load` doesn't report an error.
If the target column is a reference vector column and
``MISSING_NIL`` flag is specified, invalid elements are
replaced with ``0``. Invalid elements are ignored otherwise.
- ``[1, "invalid", 3]``
- ``[1, 3]``
* - ``INVALID_WARN``
- The given invalid element is reported as a warning in
:ref:`process-log`.
If the target column is a reference vector column and
``MISSING_NIL`` flag is specified, invalid elements are
replaced with ``0``. Invalid elements are ignored otherwise.
- ``[1, "invalid", 3]``
- ``[1, 3]``
* - ``INVALID_IGNORE``
- The given invalid element is ignored.
If the target column is a reference vector column and
``MISSING_NIL`` flag is specified, invalid elements are
replaced with ``0``. Invalid elements are ignored otherwise.
- ``[1, "invalid", 3]``
- ``[1, 3]``
Here is an example to show differences between ``INVALID_*`` flags for
a reference vector column.
First this example defines columns for all ``INVALID_*`` flags:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/invalid_mode_vector_schema.log
.. table_create \
.. --name InvalidModeVector \
.. --flags TABLE_HASH_KEY \
.. --key_type ShortText
.. column_create \
.. --table InvalidModeVector \
.. --name invalid_error \
.. --flags COLUMN_VECTOR|INVALID_ERROR \
.. --type Int32
.. column_create \
.. --table InvalidModeVector \
.. --name invalid_warn \
.. --flags COLUMN_VECTOR|INVALID_WARN \
.. --type Int32
.. column_create \
.. --table InvalidModeVector \
.. --name invalid_ignore \
.. --flags COLUMN_VECTOR|INVALID_IGNORE \
.. --type Int32
Then this example loads a vector that includes an invalid element to
all columns. The all specified invalid elements are ignored regardless
of ``INVALID_*`` flags. Messages in :ref:`process-log` are different
by ``INVALID_*`` flags. If ``INVALID_ERROR`` is specified, an error
message is logged in :ref:`process-log`. If ``INVALID_WARN`` is
specified, a warning message is logged in
:ref:`process-log`. ``INVALID_IGNORE`` is specified, no message is
logged in :ref:`process-log`:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/invalid_mode_vector_load.log
.. load --table InvalidModeVector
.. [
.. {"_key": "key", "invalid_error": [1, "invalid", 3]}
.. ]
.. load --table InvalidModeVector
.. [
.. {"_key": "key", "invalid_warn": [1, "invalid", 3]}
.. ]
.. load --table InvalidModeVector
.. [
.. {"_key": "key", "invalid_ignore": [1, "invalid", 3]}
.. ]
.. select \
.. --table InvalidModeVector \
.. --output_columns invalid_error,invalid_warn,invalid_ignore
.. _column-create-generated-column:
Create a generated column
^^^^^^^^^^^^^^^^^^^^^^^^^
.. versionadded:: 14.1.0
You can generate a column value from other column value
automatically. You can use an expression in
:doc:`../grn_expr/script_syntax` how to generate a column value.
Here is an example how to define a generated column:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/generated_column_schema.log
.. table_create \
.. --name Posts \
.. --flags TABLE_NO_KEY
.. column_create \
.. --table Posts \
.. --name title_html \
.. --flags COLUMN_SCALAR \
.. --type ShortText
.. column_create \
.. --table Posts \
.. --name title_text \
.. --flags COLUMN_SCALAR \
.. --type ShortText \
.. --source title_html \
.. --generator 'html_untag(title_html)'
``Posts.title_text`` is a generated column. Its value is generated
from a value of ``Posts.title_html``. ``--source title_html`` and
``--generator 'html_untag(title_html)'`` are the important parts.
``--source title_html`` means that ``Posts.title_text`` uses
``Posts.title_html`` as source.
``--generator 'html_untag(title_html)'`` means that
``Posts.title_text`` value is generated by evaluating
``html_untag(title_html)``. :doc:`../functions/html_untag` is a
function that removes HTML tags from HTML text. ``html_untag("Hello
<em>Groonga</em>")`` returns ``"Hello Groonga"``.
Let's load a value to ``Posts.title_html`` and see ``Posts.title_text``:
.. groonga-command
.. include:: ../../example/reference/commands/column_create/generated_column_load.log
.. load --table Posts
.. [
.. {"title_html", "Hello <em>Groonga</em>"}
.. ]
.. select --table Posts
You can see ``Posts.title_text`` has ``"Hello Groonga"``
automatically.
Parameters
----------
This section describes all parameters.
Required parameters
^^^^^^^^^^^^^^^^^^^
There are some required parameters.
.. _column-create-table:
``table``
"""""""""
Specifies an existing table name for the new column.
.. _column-create-name:
``name``
""""""""
Specifies the column name to be created.
The column name must be unique in the same table.
Here are available characters:
* ``0`` .. ``9`` (digit)
* ``a`` .. ``z`` (alphabet, lower case)
* ``A`` .. ``Z`` (alphabet, upper case)
* ``#`` (hash)
* ``@`` (at mark)
* ``-`` (hyphen)
* ``_`` (underscore) (NOTE: Underscore can't be used as the first
character.)
You need to create a name with one or more the above characters. Note
that you can't use ``_`` as the first character such as ``_name``.
.. _column-create-flags:
``flags``
"""""""""
Specifies the column type and column customize options.
Here are available flags:
.. list-table::
:header-rows: 1
* - Flag
- Description
* - ``COLUMN_SCALAR``
- Scalar column. It can store one value. See also
:doc:`/reference/columns/scalar` or
:ref:`column-create-scalar`.
* - ``COLUMN_VECTOR``
- Vector column. It can store multiple values. See also
:doc:`/reference/columns/vector` or
:ref:`column-create-vector`.
* - ``COLUMN_INDEX``
- Index column. It stores data for fast search. See also
:doc:`/reference/columns/index` or
:ref:`column-create-index`.
* - ``COMPRESS_ZLIB``
- It enables column value compression by zlib. You need Groonga
that enables zlib support.
Compression by zlib is higher space efficiency than compression
by LZ4. But compression by zlib is slower than compression by
LZ4.
This flag is available only for ``COLUMN_SCALAR`` and
``COLUMN_VECTOR``.
* - ``COMPRESS_LZ4``
- It enables column value compression by LZ4. You need Groonga
that enables LZ4 support.
Compression by LZ4 is faster than compression by zlib. But
compression by LZ4 is lower space efficiency than compression
by zlib.
This flag is available only for ``COLUMN_SCALAR`` and
``COLUMN_VECTOR``.
* - ``COMPRESS_ZSTD``
- It enables column value compression by Zstandard. You need
Groonga that enables Zstandard support.
Compression by Zstandard is faster than compression by zlib and
the same space efficiency as zlib.
This flag is available only for ``COLUMN_SCALAR`` and
``COLUMN_VECTOR``.
* - ``COMPRESS_FILTER_SHUFFLE``
- .. versionadded:: 13.0.8
.. include:: compress_filter.rst
Here are a list of suitable data type for this filter.
This flag reorganize data based on a element of Nth byte.
First, 0th byte data of each element within the vector column
would be gathered and be continuously placed. Then, 1st byte
data would be handled as same as 0th byte data and all byte
data would be as so repeatedly.
There are tendency for those compression algorithms such as
``COMPRESS_ZLIB``, ``COMPRESS_LZ4`` and ``COMPRESS_ZSTD`` to
have the higher compression rate when the data has same values
in continuance. The point for this flag is to produce data
having same values in continuance by reorganizing data for
every N byte.
In particular, it would work as below.
For example, there is the vector column ``[1, 1051, 515]`` in
``UInt16``. It would be as below representing in the little
endien byte column.
.. code-block::
| Byte 0 | Byte 1 | | Byte 0 | Byte 1 | | Byte 0 | Byte 1 |
|--------|--------| |--------|--------| |--------|--------|
| 0x01 | 0x00 |, | 0x1b | 0x04 |, | 0x03 | 0x02 |
This flag is to produce the data as following by gathering
values of ``Byte 0``, then of ``Byte 1`` from the above data.
The action to gather values with every N Byte would be called
shuffle from now on. Shuffling the above data would be as
below.
.. code-block::
| Byte 0 | Byte 0 | Byte 0 | | Byte 1 | Byte 1 | Byte 1 |
|--------|--------|--------| |--------|--------|--------|
| 0x01 | 0x1b | 0x03 |, | 0x00 | 0x04 | 0x02 |
The point is whether there would be same values in continuance
or not. Looking at the above example data, it is appeared to
have no same values in continuance after shuffling. Those data
are not suitable for this flag because it is not contributed to
increase the compression rate even shuffling.
On the other hand, the vector column ``[1, 2, 3]`` in
``UInt16`` would be as following after shuffling. First for
the explanation, ``[1, 2, 3]`` in ``UInt16`` would be
represented as below in the little endien byte column.
.. code-block::
| Byte 0 | Byte 1 | | Byte 0 | Byte 1 | | Byte 0 | Byte 1 |
|--------|--------| |--------|--------| |--------|--------|
| 0x01 | 0x00 |, | 0x02 | 0x00 |, | 0x03 | 0x00 |
And, after shuffling ``[1, 2, 3]`` in ``UInt16``, the data
would be as below.
.. code-block::
| Byte 0 | Byte 0 | Byte 0 | | Byte 1 | Byte 1 | Byte 1 |
|--------|--------|--------| |--------|--------|--------|
| 0x01 | 0x02 | 0x03 |, | 0x00 | 0x00 | 0x00 |
After shuffling ``[1, 2, 3]`` in ``UInt16``, the date in ``Byte
1`` would be all ``0x00``. It means there are same values in
continuance. Thus, this data pattern is suitable for this flag
because it would contribute to increase the compression rate.
In case of a floating-point number, the data having same the
code part and the exponent part would be corresponded. In case
of the IEEE 754 type single-precision floating-point format,
code part would be placed at 31st bit, and exponent part would
be placed at 32nd bit. There would be same values in
continuance after shuffling the data if the code part and the
upper 7 bit of exponent bit become same because the highest
byte would be structured with the code part and the upper 7 bit
of exponent bit.
For example, the data, ``[0.5, 0.6]`` in ``Float32``, would
have same code bit and exponent part by representing in
Single-precision floating-point format in IEEE 754 type as
below.
.. code-block::
| fraction (23bit) | exponent (8bit) | sign (1bit) |
|------------------------------|-----------------|-------------|
| 0000 0000 0000 0000 0000 000 | 0111 1110 | 0 |
| 0101 1001 1001 1001 1001 100 | 0111 1110 | 0 |
Shuffling the given data would have same values in continuance
for ``Byte 3`` as below.
.. code-block::
| Byte 0 | Byte 0 | | Byte 1 | Byte 1 | | Byte 2 | Byte 2 | | Byte 3 | Byte 3 |
|--------|--------| |--------|--------| |--------|--------| |--------|--------|
| 0x00 | 0x9a |, | 0x00 | 0x99 |, | 0x00 | 0x19 |, | 0x3f | 0x3f |
In case of the ``Float`` / ``Float32`` type data, please refer
to explanations for
``COMPRESS_FILTER_TRUNCATE_PRECISION_1BYTE`` and
``COMPRESS_FILTER_TRUNCATE_PRECISION_2BYTES`` since it is also
possible to combine
``COMPRESS_FILTER_TRUNCATE_PRECISION_1BYTE`` or
``COMPRESS_FILTER_TRUNCATE_PRECISION_2BYTES``.
* - ``COMPRESS_FILTER_BYTE_DELTA``
- .. versionadded:: 13.0.8
.. include:: compress_filter.rst
Here is what kind of the data being effective for this flag.
This flag is to calculate the difference between bytes of
values to be compression targeted. As sample case of the
vector column ``[1, 2, 3, 4, 5]`` in ``UInt8``, applying this
flag would produce data would become ``[1, (2-1), (3-2), (4-3),
(5-4)] = [1, 1, 1, 1, 1]``.
As noted above, it is trying to increase the compression rate
by calculating increments and producing same values in
continuance. The point is there would be same values in
continuance after calculating the increments between each
elements.
Thus, the data is not suitable to use for this flag if there
would not be same values in continuance after calculating the
increments. Here is the list of data pattern to have same
values in continuance after calculating increments.
First pattern would be the data increased with constant
interval such as ``[1, 2, 3, 4, 5]`` in ``UInt8``. The
constant interval could be every ``10`` for ``[1, 11, 21, 31,
41]`` in ``UInt8`` as long as the interval is same.
Next pattern would be the data having same values in
continuance such as ``[5, 5, 5, 5, 5]`` in ``UInt8``. There
would be ``0`` in continuance after calculating the increments
of this data. In opposite, ``[1, 255, 2, 200, 1]`` in
``UInt8`` is not suitable for this flag because the data would
not have same value in continuance after calculating the
increments.
There would be a case to be able to increase the compression
rate by combining ``COMPRESS_FILTER_SHUFFLE`` even though
calculating increments would not have same value in
continuance, or increments are too large.
For exapmle, ``[4526677, 4592401, 4658217, 4723879]`` in
``UInt32`` would be ``[4526677, 65724, 65816, 65662]`` after
only being applied ``COMPRESS_FILTER_BYTE_DELTA``. This data
would not have values in continuance, and increments are large.
But applying ``COMPRESS_FILTER_SHUFFLE`` to this data would be
different. And it will be explained in following. First for
the explanation, ``[4526677, 4592401, 4658217, 4723879]`` in
``UInt32`` would be represent the byte column in the little
endien as below.
.. code-block::
| Byte 0 | Byte 1 | Byte 2 | Byte 3 | | Byte 0 | Byte 1 | Byte 2 | Byte 3 | | Byte 0 | Byte 1 | Byte 2 | Byte 3 | | Byte 0 | Byte 1 | Byte 2 | Byte 3 |
|--------|--------|--------|--------| |--------|--------|--------|--------| |--------|--------|--------|--------| |--------|--------|--------|--------|
| 0x55 | 0x12 | 0x45 | 0x00 |, | 0x11 | 0x13 | 0x46 | 0x00 |, | 0x29 | 0x14 | 0x47 | 0x00 |, | 0xA7 | 0x14 | 0x48 | 0x00 |
Applying ``COMPRESS_FILTER_SHUFFLE`` to this data would be
following byte columns.
.. code-block::
| Byte 0 | Byte 0 | Byte 0 | Byte 0 | | Byte 1 | Byte 1 | Byte 1 | Byte 1 | | Byte 2 | Byte 2 | Byte 2 | Byte 2 | | Byte 3 | Byte 3 | Byte 3 | Byte 3 |
|--------|--------|--------|--------| |--------|--------|--------|--------| |--------|--------|--------|--------| |--------|--------|--------|--------|
| 0x55 | 0x11 | 0x29 | 0xA7 |, | 0x12 | 0x13 | 0x14 | 0x14 |, | 0x45 | 0x46 | 0x47 | 0x48 |, | 0x00 | 0x00 | 0x00 | 0x00 |
Pay attention to the data of ``Byte 1``, ``Byte 2``, and ``Byte
3`` after the shuffling. The data increments of ``Byte 1`` are
``[0x12, 0x01, 0x01, 0x00]``. The data increments of ``Byte 2``
are ``[0x45, 0x01, 0x01, 0x01]``. The data increments of
``Byte 3`` are ``[0x00, 0x00, 0x00, 0x00]``. From those
numbers, you can see the data increments have small values and
have same values in continuance.
As you see these, the compression rate could be increase by
combining ``COMPRESS_FILTER_SHUFFLE`` even if applying
``COMPRESS_FILTER_BYTE_DELTA`` did not change the rate.
Please note that ``COMPRESS_FILTER_SHUFFLE`` would not be
effective for the 1 byte data because it is to gather the same
byte from the data. (The 1 byte data would have same data
column whether being shuffled or not.) Thus, in case of
combining ``COMPRESS_FILTER_BYTE_DELTA`` and
``COMPRESS_FILTER_SHUFFLE``, please do not use data in ``Int8``
/ ``UInt8``. Only use for other type.
* - ``COMPRESS_FILTER_TRUNCATE_PRECISION_1BYTE``
- .. versionadded:: 13.0.8
.. include:: compress_filter.rst
This flag can be used only for ``Float`` / ``Float32``. And it
is expected to be combined with ``COMPRESS_FILTER_SHUFFLE`` .
Here is what kind of the data being effective for this flag.
This flag would drop the 1 byte of fraction from each vector
column elements of ``Float`` / ``Float32`` type. Dropping the
fraction means making all of the lower 1 byte of the
floating-point number ``0``.
For example, ``[1.25, 3.67, 4.55]`` in ``Float32`` would be
presented as following in the IEEE 754 format single-precision
floating-point.
.. code-block::
| fraction (23bit) | exponent (8bit) | sign (1bit) |
|------------------------------|-----------------|-------------|
| 0000 0000 0000 0000 0000 010 | 1111 1110 | 0 |
| 0001 0010 1000 0111 0101 011 | 0000 0001 | 0 |
| 0101 1001 1001 1001 1000 100 | 1000 0001 | 0 |
Applying this flag make all lower 1 byte ``0``. And the data
would be as below. Pay attention to all ``0`` for lower 1byte
of fixed-point part.
.. code-block::
| fraction (23bit) | exponent (8bit) | sign (1bit) |
|------------------------------|-----------------|-------------|
| 0000 0000 0000 0000 0000 010 | 1111 1110 | 0 |
| 0000 0000 1000 0111 0101 011 | 0000 0001 | 0 |
| 0000 0000 1001 1001 1000 100 | 1000 0001 | 0 |
These actions are what would be done for single flag usage. As
noted, this flag is expected to be combined with
``COLUMN_FILTER_SHUFFLE`` . Thus, by shuffling the data it is
to expected increasing the compression rate after using the
flag.
Applying ``COMPRESS_FILTER_TRUNCATE_PRECISION_1BYTE`` then
shuffling would produce data as below.
.. code-block::
| Byte 0 | Byte 0 | Byte 0 | | Byte 1 | Byte 1 | Byte 1 | | Byte 2 | Byte 2 | Byte 2 | | Byte 3 | Byte 3 | Byte 3 |
|--------|--------|--------| |--------|--------|--------| |--------|--------|--------| |--------|--------|--------|
| 0x00 | 0x00 | 0x00 |, | 0x00 | 0xe1 | 0x99 |, | 0xa0 | 0x6a | 0x91 |, | 0x3f | 0x40 | 0x40 |
Pay attention to the ``Byte 0``. You can find the value ``0``
in continuance for ``Byte 0``. If
``COMPRESS_FILTER_TRUNCATE_PRECISION_1BYTE`` was not applied
and shuffled, the data would be as following table, there would
be no same value in continuance for any bytes.
.. code-block::
| Byte 0 | Byte 0 | Byte 0 | | Byte 1 | Byte 1 | Byte 1 | | Byte 2 | Byte 2 | Byte 2 | | Byte 3 | Byte 3 | Byte 3 |
|--------|--------|--------| |--------|--------|--------| |--------|--------|--------| |--------|--------|--------|
| 0x00 | 0x48 | 0x9a |, | 0x00 | 0xe1 | 0x99 |, | 0xa0 | 0x6a | 0x91 |, | 0x3f | 0x40 | 0x40 |
Applying ``COMPRESS_FILTER_TRUNCATE_PRECISION_1BYTE`` to those
data can be expected to increase the compression rate even if
those data cannot increase the compression rate only with
shuffling. However, note the data may be inaccurate since the
fraction of the floating-point number is dropped for 1 byte.
* - ``COMPRESS_FILTER_TRUNCATE_PRECISION_2BYTES``
- .. versionadded:: 13.0.8
.. include:: compress_filter.rst
This flag can be used only for ``Float`` / ``Float32``. And it
is expected to be combined with ``COMPRESS_FILTER_SHUFFLE``.
Here is what kind of the data being effective for this flag.
This flag would drop the 2 bytes of fraction from each vector
column elements of ``Float`` / ``Float32`` type. Dropping the
fraction means making all of the lower 2 bytes of the
floating-point number ``0``.
For example, ``[1.25, 3.67, 4.55]`` in ``Float32`` would be
presented as following in the IEEE 754 format single-precision
floating-point.
.. code-block::
| fraction (23bit) | exponent (8bit) | sign (1bit) |
|------------------------------|-----------------|-------------|
| 0000 0000 0000 0000 0000 010 | 1111 1110 | 0 |
| 0001 0010 1000 0111 0101 011 | 0000 0001 | 0 |
| 0101 1001 1001 1001 1000 100 | 1000 0001 | 0 |
Applying this flag make all lower 2 bytes ``0``. And the data
would be as below. Pay attention to all ``0`` for lower 2
bytes of fixed-point part.
.. code-block::
| fraction (23bit) | exponent (8bit) | sign (1bit) |
|------------------------------|-----------------|-------------|
| 0000 0000 0000 0000 0000 010 | 1111 1110 | 0 |
| 0000 0000 0000 0000 0101 011 | 0000 0001 | 0 |
| 0000 0000 0000 0000 1000 100 | 1000 0001 | 0 |
These actions are what would be done for single flag usage. As
noted, this flag is expected to be combined with
``COLUMN_FILTER_SHUFFLE`` . Thus, by shuffling the data it is
to expected increasing the compression rate after using the
flag.
Applying ``COMPRESS_FILTER_TRUNCATE_PRECISION_2BYTE`` then
shuffling would produce data as below.
.. code-block::
| Byte 0 | Byte 0 | Byte 0 | | Byte 1 | Byte 1 | Byte 1 | | Byte 2 | Byte 2 | Byte 2 | | Byte 3 | Byte 3 | Byte 3 |
|--------|--------|--------| |--------|--------|--------| |--------|--------|--------| |--------|--------|--------|
| 0x00 | 0x00 | 0x00 |, | 0x00 | 0x00 | 0x00 |, | 0xa0 | 0x6a | 0x91 |, | 0x3f | 0x40 | 0x40 |
Pay attention to the ``Byte 0`` and ``Byte 1``. You can find
the value ``0`` in continuance for ``Byte 0`` and ``Byte1``.
If ``COMPRESS_FILTER_TRUNCATE_PRECISION_2BYTE`` was not applied
and shuffled, the data would be as following table, there would
be no same value in continuance for any bytes.
.. code-block::
| Byte 0 | Byte 0 | Byte 0 | | Byte 1 | Byte 1 | Byte 1 | | Byte 2 | Byte 2 | Byte 2 | | Byte 3 | Byte 3 | Byte 3 |
|--------|--------|--------| |--------|--------|--------| |--------|--------|--------| |--------|--------|--------|
| 0x00 | 0x48 | 0x9a |, | 0x00 | 0xe1 | 0x99 |, | 0xa0 | 0x6a | 0x91 |, | 0x3f | 0x40 | 0x40 |
Applying ``COMPRESS_FILTER_TRUNCATE_PRECISION_2BYTE`` to those
data can be expected to increase the compression rate even if
those data cannot increase the compression rate only with
shuffling.
However, note the data may be inaccurate since the fraction of
the floating-point number is dropped for 2 bytes.
* - ``WITH_SECTION``
- It enables section support to index column.
If section support is enabled, you can support multiple
documents in the same index column.
You must specify this flag to create a multiple columns index
column. See also :ref:`column-create-index-multiple-columns` for
details.
Section support requires additional spaces. If you don't need
section support, you should not enable section support.
This flag is available only for ``COLUMN_INDEX``.
* - ``WITH_WEIGHT``
- It enables weight support to vector column or index column.
If weight support is enabled for vector column, you can add
weight for each element. If weight support is enabled for index
column, you can add weight for each posting. They are useful to
compute suitable search score.
You must specify this flag to use :ref:`select-adjuster`. See
also :ref:`column-create-vector-weight` for details.
Weight support requires additional spaces. If you don't need
weight support, you should not enable weight support.
This flag is available only for ``COLUMN_VECTOR`` or
``COLUMN_INDEX``.
* - ``WEIGHT_FLOAT32``
- .. versionadded:: 10.0.3
You can use 32bit floating point instead of 32bit unsigned
integer for weight value.
You also need to specify ``WITH_WEIGHT``.
This flag is available only for ``COLUMN_VECTOR`` or
``COLUMN_INDEX``.
* - ``WITH_POSITION``
- It enables position support to index column. It means that the
index column is full inverted index. (Index column is
implemented as inverted index.)
If position support is enabled, you can add position in the
document for each posting. It's required for phrase search. It
means that index column for full text search must enable
position support because most full text search uses phrase
search.
You must specify this flag to create a full text search index
column. See also :ref:`column-create-index-full-text-search` for
details.
Position support requires additional spaces. If you don't need
position support, you should not enable position support.
This flag is available only for ``COLUMN_INDEX``.
* - ``INDEX_SMALL``
- .. versionadded:: 6.0.8
It requires to create a small index column.
If index target data are small, small index column is enough.
Small index column uses fewer memory than a normal index column
or a medium index column. See also
:ref:`column-create-index-small` for knowing what are "small
data" and how to use this flag.
This flag is available only for ``COLUMN_INDEX``.
* - ``INDEX_MEDIUM``
- .. versionadded:: 6.0.8
It requires to create a medium index column.
If index target data are medium, medium index column is enough.
Medium index column uses fewer memory than a normal index
column. See also :ref:`column-create-index-medium` for knowing
what are "medium data" and how to use this flag.
This flag is available only for ``COLUMN_INDEX``.
* - ``INDEX_LARGE``
- .. versionadded:: 9.0.2
It requires to create a large index column.
If index target data are large, you need to use large index
column. Large index column uses more memory than a normal index
column but accepts more data than a normal index column. See
also :ref:`column-create-index-large` for knowing what are
"large data" and how to use this flag.
This flag is available only for ``COLUMN_INDEX``.
* - ``MISSING_ADD``
- .. versionadded:: 12.0.2
You can't specify multiple ``MISSING_*`` flags. They are
exclusive.
This is meaningful only for reference scalar and vector
columns.
If this flag is specified and nonexistent key in the referred
table is specified to the column's value, a new record is
created in the referred table automatically.
If you don't specify any ``MISSING_*`` flag, ``MISSING_ADD`` is
used as the default.
See also :ref:`column-create-missing-mode`.
This flag is available only for ``COLUMN_SCALAR`` and
``COLUMN_VECTOR``.
* - ``MISSING_IGNORE``
- .. versionadded:: 12.0.2
You can't specify multiple ``MISSING_*`` flags. They are
exclusive.
This is meaningful only for reference scalar and vector
columns.
If this flag is specified and nonexistent key in the referred
table is specified to the column's value, the value is just
ignored. If the column is a scalar column, ``GRN_ID_NIL``
(``0``) is stored because Groonga doesn't support the NULL
value. If the column is a vector column, the element is just
removed from the value. For example, ``["existent1",
"nonexistent", "existent2"]`` is set to the vector column and
``"nonexistent"`` record doesn't exist in the referred table,
``["existent1", "existent2"]`` are set to the vector column.
See also :ref:`column-create-missing-mode`.
This flag is available only for ``COLUMN_SCALAR`` and
``COLUMN_VECTOR``.
* - ``MISSING_NIL``
- .. versionadded:: 12.0.2
You can't specify multiple ``MISSING_*`` flags. They are
exclusive.
This is meaningful only for reference scalar and vector
columns.
If this flag is specified and nonexistent key in the referred
table is specified to the column's value, the value is replaced
with ``GRN_ID_NIL`` (``0``).
See also :ref:`column-create-missing-mode`.
This flag is available only for ``COLUMN_SCALAR`` and
``COLUMN_VECTOR``.
* - ``INVALID_ERROR``
- .. versionadded:: 12.0.2
You can't specify multiple ``INVALID_*`` flags. They are
exclusive.
If this flag is specified and an invalid value is specified, an
error is reported to :ref:`process-log`.
For example, ``"STRING"`` for ``Int32`` column is an invalid
value.
If the column is a scalar column, :doc:`load` also reports an
error.
If the column is a vector column, :doc:`load` doesn't reports
an error but invalid values in a vector value are removed or
replaced with ``GRN_ID_NIL`` (``0``) depending on ``MISSING_*``
flag of the column.
.. note::
This is an incompatible change at 12.0.2. :doc:`load`
also reports an error for a vector column before 12.0.2.
If you don't specify any ``INVALID_*`` flag, ``INVALID_ERROR`` is
used as the default.
See also :ref:`column-create-invalid-mode`.
This flag is available only for ``COLUMN_SCALAR`` and
``COLUMN_VECTOR``.
* - ``INVALID_WARN``
- .. versionadded:: 12.0.2
You can't specify multiple ``INVALID_*`` flags. They are
exclusive.
If this flag is specified and an invalid value is specified, a
warning is reported to :ref:`process-log` but no error is
reported.
For example, ``"STRING"`` for ``Int32`` column is an invalid
value.
If the column is a vector column, invalid values in a vector
value are removed or replaced with ``GRN_ID_NIL`` (``0``)
depending on ``MISSING_*`` flag of the column.
See also :ref:`column-create-invalid-mode`.
This flag is available only for ``COLUMN_SCALAR`` and
``COLUMN_VECTOR``.
* - ``INVALID_IGNORE``
- .. versionadded:: 12.0.2
You can't specify multiple ``INVALID_*`` flags. They are
exclusive.
If this flag is specified and an invalid value is specified,
it's just ignored.
For example, ``"STRING"`` for ``Int32`` column is an invalid
value.
If the column is a vector column, invalid values in a vector
value are removed or replaced with ``GRN_ID_NIL`` (``0``)
depending on ``MISSING_*`` flag of the column.
See also :ref:`column-create-invalid-mode`.
This flag is available only for ``COLUMN_SCALAR`` and
``COLUMN_VECTOR``.
You must specify one of ``COLUMN_${TYPE}`` flags. You can't specify
two or more ``COLUMN_${TYPE}`` flags. For example,
``COLUMN_SCALAR|COLUMN_VECTOR`` is invalid.
You can combine flags with ``|`` (vertical bar) such as
``COLUMN_INDEX|WITH_SECTION|WITH_POSITION``.
.. _column-create-type:
``type``
""""""""
Specifies type of the column value.
If the column is scalar column or vector column, here are available
types:
* Builtin types described in :doc:`/reference/types`
* Tables defined by users
If the column is index column, here are available types:
* Tables defined by users
See also the followings:
* :ref:`column-create-scalar`
* :ref:`column-create-vector`
* :ref:`column-create-reference`
* :ref:`column-create-index`
Optional parameters
^^^^^^^^^^^^^^^^^^^
There is an optional parameter.
.. _column-create-source:
``source``
""""""""""
Specifies index target columns. You can specify one or more columns to
the ``source`` parameter.
This parameter is only available for index column.
You can only specify columns of the table specified as
:ref:`column-create-type`. You can also use the ``_key`` pseudo column
for specifying the table key as index target.
If you specify multiple columns to the ``source`` parameter, separate
columns with ``,`` (comma) such as ``_key,roles``.
``path``
""""""""
.. versionadded:: 10.0.7
Specifies a path for storing a column.
This option is useful if you want to store a column that
you often use to fast storage (e.g. SSD) and store it that you don't often
use to slow storage (e.g. HDD).
You can use a relative path or an absolute path in this option.
If you specify a relative path, it is resolved from the current directory for the ``groonga`` process.
The default value is none.
.. _column-create-generator:
``generator``
"""""""""""""
.. versionadded:: 14.1.0
Specifies a generator expression in :doc:`../grn_expr/script_syntax`
that is used to generate column value automatically.
This option is useful if you want to generate a column value from
other column value automatically.
The default value is none.
.. seealso:: :ref:`column-create-generated-column`
Return value
------------
``column_create`` returns ``true`` as body on success such as::
[HEADER, true]
If ``column_create`` fails, ``column_create`` returns ``false`` as
body::
[HEADER, false]
Error details are in ``HEADER``.
See :doc:`/reference/command/output_format` for ``HEADER``.
See also
--------
* :doc:`/reference/column`
* :doc:`/reference/commands/table_create`
* :doc:`/reference/command/output_format`
|