1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
/*
Copyright (C) 2024 Sutou Kouhei <kou@clear-code.com>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#pragma once
#include "grn_ctx.h"
#include <groonga/bulk.hpp>
#include <cmath>
#ifdef GRN_WITH_SIMSIMD
# include <simsimd/simsimd.h>
#endif
#ifdef GRN_WITH_XSIMD
# include <xsimd/xsimd.hpp>
#endif
namespace grn {
namespace distance {
extern bool use_simsimd;
extern bool use_xsimd;
constexpr size_t use_simd_threshold = 256;
#ifdef GRN_WITH_SIMSIMD
namespace simsimd {
extern simsimd_capability_t capabilities;
}
#endif
#ifdef GRN_WITH_XSIMD
struct l2_norm {
template <typename Arch, typename ElementType>
float
operator()(Arch, const ElementType *vector_raw, size_t n_elements);
};
struct difference_l1_norm {
template <typename Arch, typename ElementType>
float
operator()(Arch,
const ElementType *vector_raw1,
const ElementType *vector_raw2,
size_t n_elements);
};
struct difference_l2_norm_squared {
template <typename Arch, typename ElementType>
float
operator()(Arch,
const ElementType *vector_raw1,
const ElementType *vector_raw2,
size_t n_elements);
};
struct inner_product {
template <typename Arch, typename ElementType>
float
operator()(Arch,
const ElementType *vector_raw1,
const ElementType *vector_raw2,
size_t n_elements);
};
struct cosine {
template <typename Arch, typename ElementType>
float
operator()(Arch,
const ElementType *vector_raw1,
const ElementType *vector_raw2,
size_t n_elements);
};
#endif
} // namespace distance
} // namespace grn
#ifdef GRN_WITH_XSIMD
# define GRN_INSTANTIATION_EXTERN extern
# define GRN_INSTANTIATION_SIMSIMD_ARCH avx512
# define GRN_INSTANTIATION_XSIMD_ARCH xsimd::avx512dq
# include "grn_distance_instantiation.hpp"
# undef GRN_INSTANTIATION_SIMSIMD_ARCH
# undef GRN_INSTANTIATION_XSIMD_ARCH
# define GRN_INSTANTIATION_XSIMD_ARCH xsimd::avx2
# include "grn_distance_instantiation.hpp"
# undef GRN_INSTANTIATION_XSIMD_ARCH
# define GRN_INSTANTIATION_XSIMD_ARCH xsimd::avx
# include "grn_distance_instantiation.hpp"
# undef GRN_INSTANTIATION_XSIMD_ARCH
# define GRN_INSTANTIATION_SIMSIMD_ARCH neon
# define GRN_INSTANTIATION_XSIMD_ARCH xsimd::neon64
# include "grn_distance_instantiation.hpp"
# undef GRN_INSTANTIATION_SIMSIMD_ARCH
# undef GRN_INSTANTIATION_XSIMD_ARCH
# define GRN_INSTANTIATION_SIMSIMD_ARCH serial
# define GRN_INSTANTIATION_XSIMD_ARCH xsimd::generic
# include "grn_distance_instantiation.hpp"
# undef GRN_INSTANTIATION_SIMSIMD_ARCH
# undef GRN_INSTANTIATION_XSIMD_ARCH
# undef GRN_INSTANTIATION_EXTERN
#endif
namespace grn {
namespace distance {
template <typename ElementType>
float
compute_l2_norm(grn_obj *vector)
{
auto vector_raw =
reinterpret_cast<const ElementType *>(GRN_BULK_HEAD(vector));
auto n_elements = GRN_BULK_VSIZE(vector) / sizeof(ElementType);
#ifdef GRN_WITH_SIMD
# ifdef GRN_WITH_XSIMD
if (use_xsimd &&
(sizeof(ElementType) * n_elements) >= use_simd_threshold) {
auto dispatched = xsimd::dispatch<xsimd::arch_list<
# ifdef GRN_WITH_SIMD_AVX512
xsimd::avx512dq,
# endif
# ifdef GRN_WITH_SIMD_AVX2
xsimd::avx2,
# endif
# ifdef GRN_WITH_SIMD_AVX
xsimd::avx,
# endif
# ifdef GRN_WITH_SIMD_NEON64
xsimd::neon64,
# endif
xsimd::generic>>(l2_norm{});
return dispatched(vector_raw, n_elements);
}
# endif
#endif
float square_sum = 0;
for (size_t i = 0; i < n_elements; ++i) {
square_sum += vector_raw[i] * vector_raw[i];
}
return std::sqrt(square_sum);
}
template <typename ElementType>
float
compute_difference_l1_norm(grn_obj *vector1, grn_obj *vector2)
{
auto vector_raw1 =
reinterpret_cast<const ElementType *>(GRN_BULK_HEAD(vector1));
auto vector_raw2 =
reinterpret_cast<const ElementType *>(GRN_BULK_HEAD(vector2));
auto n_elements = GRN_BULK_VSIZE(vector1) / sizeof(ElementType);
#ifdef GRN_WITH_SIMD
# ifdef GRN_WITH_XSIMD
if (use_xsimd &&
(sizeof(ElementType) * n_elements * 2) >= use_simd_threshold) {
auto dispatched = xsimd::dispatch<xsimd::arch_list<
# ifdef GRN_WITH_SIMD_AVX512
xsimd::avx512dq,
# endif
# ifdef GRN_WITH_SIMD_AVX2
xsimd::avx2,
# endif
# ifdef GRN_WITH_SIMD_AVX
xsimd::avx,
# endif
# ifdef GRN_WITH_SIMD_NEON64
xsimd::neon64,
# endif
xsimd::generic>>(difference_l1_norm{});
return dispatched(vector_raw1, vector_raw2, n_elements);
}
# endif
#endif
ElementType absolute_sum = 0;
for (size_t i = 0; i < n_elements; ++i) {
auto difference = vector_raw1[i] - vector_raw2[i];
absolute_sum += difference * ((difference > 0) - (difference < 0));
}
return absolute_sum;
}
template <typename ElementType>
float
compute_difference_l2_norm_squared(grn_obj *vector1, grn_obj *vector2)
{
auto vector_raw1 =
reinterpret_cast<const ElementType *>(GRN_BULK_HEAD(vector1));
auto vector_raw2 =
reinterpret_cast<const ElementType *>(GRN_BULK_HEAD(vector2));
auto n_elements = GRN_BULK_VSIZE(vector1) / sizeof(ElementType);
#ifdef GRN_WITH_SIMD
# ifdef GRN_WITH_SIMSIMD
if (use_simsimd &&
(sizeof(ElementType) * n_elements * 2) >= use_simd_threshold) {
# ifdef GRN_WITH_SIMD_AVX512
if (simsimd::capabilities & simsimd_cap_x86_avx512_k) {
return simsimd::compute_distance_l2_norm_squared_avx512(vector_raw1,
vector_raw2,
n_elements);
}
# endif
# ifdef GRN_WITH_SIMD_NEON64
if (simsimd::capabilities & simsimd_cap_arm_neon_k) {
return simsimd::compute_distance_l2_norm_squared_neon(vector_raw1,
vector_raw2,
n_elements);
}
# endif
return simsimd::compute_distance_l2_norm_squared_serial(vector_raw1,
vector_raw2,
n_elements);
}
# endif
# ifdef GRN_WITH_XSIMD
if (use_xsimd &&
(sizeof(ElementType) * n_elements * 2) >= use_simd_threshold) {
auto dispatched = xsimd::dispatch<xsimd::arch_list<
# ifdef GRN_WITH_SIMD_AVX512
xsimd::avx512dq,
# endif
# ifdef GRN_WITH_SIMD_AVX2
xsimd::avx2,
# endif
# ifdef GRN_WITH_SIMD_AVX
xsimd::avx,
# endif
# ifdef GRN_WITH_SIMD_NEON64
xsimd::neon64,
# endif
xsimd::generic>>(difference_l2_norm_squared{});
return dispatched(vector_raw1, vector_raw2, n_elements);
}
# endif
#endif
ElementType square_sum = 0;
for (size_t i = 0; i < n_elements; ++i) {
auto difference = vector_raw1[i] - vector_raw2[i];
square_sum += difference * difference;
}
return square_sum;
}
template <typename ElementType>
float
compute_distance_inner_product(grn_obj *vector1, grn_obj *vector2)
{
auto vector_raw1 =
reinterpret_cast<const ElementType *>(GRN_BULK_HEAD(vector1));
auto vector_raw2 =
reinterpret_cast<const ElementType *>(GRN_BULK_HEAD(vector2));
auto n_elements = GRN_BULK_VSIZE(vector1) / sizeof(ElementType);
#ifdef GRN_WITH_SIMD
# ifdef GRN_WITH_SIMSIMD
if (use_simsimd &&
(sizeof(ElementType) * n_elements * 2) >= use_simd_threshold) {
# ifdef GRN_WITH_SIMD_AVX512
if (simsimd::capabilities & simsimd_cap_x86_avx512_k) {
return simsimd::compute_distance_inner_product_avx512(vector_raw1,
vector_raw2,
n_elements);
}
# endif
# ifdef GRN_WITH_SIMD_NEON64
if (simsimd::capabilities & simsimd_cap_arm_neon_k) {
return simsimd::compute_distance_inner_product_neon(vector_raw1,
vector_raw2,
n_elements);
}
# endif
return simsimd::compute_distance_inner_product_serial(vector_raw1,
vector_raw2,
n_elements);
}
# endif
# ifdef GRN_WITH_XSIMD
if (use_xsimd &&
(sizeof(ElementType) * n_elements * 2) >= use_simd_threshold) {
auto dispatched = xsimd::dispatch<xsimd::arch_list<
# ifdef GRN_WITH_SIMD_AVX512
xsimd::avx512dq,
# endif
# ifdef GRN_WITH_SIMD_AVX2
xsimd::avx2,
# endif
# ifdef GRN_WITH_SIMD_AVX
xsimd::avx,
# endif
# ifdef GRN_WITH_SIMD_NEON64
xsimd::neon64,
# endif
xsimd::generic>>(inner_product{});
return dispatched(vector_raw1, vector_raw2, n_elements);
}
# endif
#endif
ElementType multiplication_sum = 0;
for (size_t i = 0; i < n_elements; ++i) {
multiplication_sum += vector_raw1[i] * vector_raw2[i];
}
return 1 - multiplication_sum;
}
template <typename ElementType>
float
compute_distance_cosine(grn_obj *vector1, grn_obj *vector2)
{
auto vector_raw1 =
reinterpret_cast<const ElementType *>(GRN_BULK_HEAD(vector1));
auto vector_raw2 =
reinterpret_cast<const ElementType *>(GRN_BULK_HEAD(vector2));
auto n_elements = GRN_BULK_VSIZE(vector1) / sizeof(ElementType);
#ifdef GRN_WITH_SIMD
# ifdef GRN_WITH_SIMSIMD
if (use_simsimd &&
(sizeof(ElementType) * n_elements * 2) >= use_simd_threshold) {
# ifdef GRN_WITH_SIMD_AVX512
if (simsimd::capabilities & simsimd_cap_x86_avx512_k) {
return simsimd::compute_distance_cosine_avx512(vector_raw1,
vector_raw2,
n_elements);
}
# endif
# ifdef GRN_WITH_SIMD_NEON64
if (simsimd::capabilities & simsimd_cap_arm_neon_k) {
return simsimd::compute_distance_cosine_neon(vector_raw1,
vector_raw2,
n_elements);
}
# endif
return simsimd::compute_distance_cosine_serial(vector_raw1,
vector_raw2,
n_elements);
}
# endif
# ifdef GRN_WITH_XSIMD
if (use_xsimd &&
(sizeof(ElementType) * n_elements * 2) >= use_simd_threshold) {
auto dispatched = xsimd::dispatch<xsimd::arch_list<
# ifdef GRN_WITH_SIMD_AVX512
xsimd::avx512dq,
# endif
# ifdef GRN_WITH_SIMD_AVX2
xsimd::avx2,
# endif
# ifdef GRN_WITH_SIMD_AVX
xsimd::avx,
# endif
# ifdef GRN_WITH_SIMD_NEON64
xsimd::neon64,
# endif
xsimd::generic>>(cosine{});
return dispatched(vector_raw1, vector_raw2, n_elements);
}
# endif
#endif
ElementType inner_product = 0;
ElementType square_sum1 = 0;
ElementType square_sum2 = 0;
for (size_t i = 0; i < n_elements; ++i) {
ElementType value1 = vector_raw1[i];
ElementType value2 = vector_raw2[i];
inner_product += value1 * value2;
square_sum1 += value1 * value1;
square_sum2 += value2 * value2;
}
if (numeric::is_zero(inner_product)) {
return 1;
} else {
return 1 - (inner_product /
(std::sqrt(square_sum1) * std::sqrt(square_sum2)));
}
}
} // namespace distance
} // namespace grn
|