File: grn_distance.hpp

package info (click to toggle)
groonga 15.0.4%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 163,080 kB
  • sloc: ansic: 770,564; cpp: 48,925; ruby: 40,447; javascript: 10,250; yacc: 7,045; sh: 5,602; python: 2,821; makefile: 1,672
file content (394 lines) | stat: -rw-r--r-- 13,022 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
/*
  Copyright (C) 2024  Sutou Kouhei <kou@clear-code.com>

  This library is free software; you can redistribute it and/or
  modify it under the terms of the GNU Lesser General Public
  License as published by the Free Software Foundation; either
  version 2.1 of the License, or (at your option) any later version.

  This library is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  Lesser General Public License for more details.

  You should have received a copy of the GNU Lesser General Public
  License along with this library; if not, write to the Free Software
  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
*/

#pragma once

#include "grn_ctx.h"

#include <groonga/bulk.hpp>

#include <cmath>

#ifdef GRN_WITH_SIMSIMD
#  include <simsimd/simsimd.h>
#endif

#ifdef GRN_WITH_XSIMD
#  include <xsimd/xsimd.hpp>
#endif

namespace grn {
  namespace distance {
    extern bool use_simsimd;
    extern bool use_xsimd;
    constexpr size_t use_simd_threshold = 256;

#ifdef GRN_WITH_SIMSIMD
    namespace simsimd {
      extern simsimd_capability_t capabilities;
    }
#endif

#ifdef GRN_WITH_XSIMD
    struct l2_norm {
      template <typename Arch, typename ElementType>
      float
      operator()(Arch, const ElementType *vector_raw, size_t n_elements);
    };

    struct difference_l1_norm {
      template <typename Arch, typename ElementType>
      float
      operator()(Arch,
                 const ElementType *vector_raw1,
                 const ElementType *vector_raw2,
                 size_t n_elements);
    };

    struct difference_l2_norm_squared {
      template <typename Arch, typename ElementType>
      float
      operator()(Arch,
                 const ElementType *vector_raw1,
                 const ElementType *vector_raw2,
                 size_t n_elements);
    };

    struct inner_product {
      template <typename Arch, typename ElementType>
      float
      operator()(Arch,
                 const ElementType *vector_raw1,
                 const ElementType *vector_raw2,
                 size_t n_elements);
    };

    struct cosine {
      template <typename Arch, typename ElementType>
      float
      operator()(Arch,
                 const ElementType *vector_raw1,
                 const ElementType *vector_raw2,
                 size_t n_elements);
    };
#endif
  } // namespace distance
} // namespace grn

#ifdef GRN_WITH_XSIMD
#  define GRN_INSTANTIATION_EXTERN       extern

#  define GRN_INSTANTIATION_SIMSIMD_ARCH avx512
#  define GRN_INSTANTIATION_XSIMD_ARCH   xsimd::avx512dq
#  include "grn_distance_instantiation.hpp"
#  undef GRN_INSTANTIATION_SIMSIMD_ARCH
#  undef GRN_INSTANTIATION_XSIMD_ARCH

#  define GRN_INSTANTIATION_XSIMD_ARCH xsimd::avx2
#  include "grn_distance_instantiation.hpp"
#  undef GRN_INSTANTIATION_XSIMD_ARCH

#  define GRN_INSTANTIATION_XSIMD_ARCH xsimd::avx
#  include "grn_distance_instantiation.hpp"
#  undef GRN_INSTANTIATION_XSIMD_ARCH

#  define GRN_INSTANTIATION_SIMSIMD_ARCH neon
#  define GRN_INSTANTIATION_XSIMD_ARCH   xsimd::neon64
#  include "grn_distance_instantiation.hpp"
#  undef GRN_INSTANTIATION_SIMSIMD_ARCH
#  undef GRN_INSTANTIATION_XSIMD_ARCH

#  define GRN_INSTANTIATION_SIMSIMD_ARCH serial
#  define GRN_INSTANTIATION_XSIMD_ARCH   xsimd::generic
#  include "grn_distance_instantiation.hpp"
#  undef GRN_INSTANTIATION_SIMSIMD_ARCH
#  undef GRN_INSTANTIATION_XSIMD_ARCH

#  undef GRN_INSTANTIATION_EXTERN
#endif

namespace grn {
  namespace distance {
    template <typename ElementType>
    float
    compute_l2_norm(grn_obj *vector)
    {
      auto vector_raw =
        reinterpret_cast<const ElementType *>(GRN_BULK_HEAD(vector));
      auto n_elements = GRN_BULK_VSIZE(vector) / sizeof(ElementType);
#ifdef GRN_WITH_SIMD
#  ifdef GRN_WITH_XSIMD
      if (use_xsimd &&
          (sizeof(ElementType) * n_elements) >= use_simd_threshold) {
        auto dispatched = xsimd::dispatch<xsimd::arch_list<
#    ifdef GRN_WITH_SIMD_AVX512
          xsimd::avx512dq,
#    endif
#    ifdef GRN_WITH_SIMD_AVX2
          xsimd::avx2,
#    endif
#    ifdef GRN_WITH_SIMD_AVX
          xsimd::avx,
#    endif
#    ifdef GRN_WITH_SIMD_NEON64
          xsimd::neon64,
#    endif
          xsimd::generic>>(l2_norm{});
        return dispatched(vector_raw, n_elements);
      }
#  endif
#endif
      float square_sum = 0;
      for (size_t i = 0; i < n_elements; ++i) {
        square_sum += vector_raw[i] * vector_raw[i];
      }
      return std::sqrt(square_sum);
    }

    template <typename ElementType>
    float
    compute_difference_l1_norm(grn_obj *vector1, grn_obj *vector2)
    {
      auto vector_raw1 =
        reinterpret_cast<const ElementType *>(GRN_BULK_HEAD(vector1));
      auto vector_raw2 =
        reinterpret_cast<const ElementType *>(GRN_BULK_HEAD(vector2));
      auto n_elements = GRN_BULK_VSIZE(vector1) / sizeof(ElementType);
#ifdef GRN_WITH_SIMD
#  ifdef GRN_WITH_XSIMD
      if (use_xsimd &&
          (sizeof(ElementType) * n_elements * 2) >= use_simd_threshold) {
        auto dispatched = xsimd::dispatch<xsimd::arch_list<
#    ifdef GRN_WITH_SIMD_AVX512
          xsimd::avx512dq,
#    endif
#    ifdef GRN_WITH_SIMD_AVX2
          xsimd::avx2,
#    endif
#    ifdef GRN_WITH_SIMD_AVX
          xsimd::avx,
#    endif
#    ifdef GRN_WITH_SIMD_NEON64
          xsimd::neon64,
#    endif
          xsimd::generic>>(difference_l1_norm{});
        return dispatched(vector_raw1, vector_raw2, n_elements);
      }
#  endif
#endif
      ElementType absolute_sum = 0;
      for (size_t i = 0; i < n_elements; ++i) {
        auto difference = vector_raw1[i] - vector_raw2[i];
        absolute_sum += difference * ((difference > 0) - (difference < 0));
      }
      return absolute_sum;
    }

    template <typename ElementType>
    float
    compute_difference_l2_norm_squared(grn_obj *vector1, grn_obj *vector2)
    {
      auto vector_raw1 =
        reinterpret_cast<const ElementType *>(GRN_BULK_HEAD(vector1));
      auto vector_raw2 =
        reinterpret_cast<const ElementType *>(GRN_BULK_HEAD(vector2));
      auto n_elements = GRN_BULK_VSIZE(vector1) / sizeof(ElementType);
#ifdef GRN_WITH_SIMD
#  ifdef GRN_WITH_SIMSIMD
      if (use_simsimd &&
          (sizeof(ElementType) * n_elements * 2) >= use_simd_threshold) {
#    ifdef GRN_WITH_SIMD_AVX512
        if (simsimd::capabilities & simsimd_cap_x86_avx512_k) {
          return simsimd::compute_distance_l2_norm_squared_avx512(vector_raw1,
                                                                  vector_raw2,
                                                                  n_elements);
        }
#    endif
#    ifdef GRN_WITH_SIMD_NEON64
        if (simsimd::capabilities & simsimd_cap_arm_neon_k) {
          return simsimd::compute_distance_l2_norm_squared_neon(vector_raw1,
                                                                vector_raw2,
                                                                n_elements);
        }
#    endif
        return simsimd::compute_distance_l2_norm_squared_serial(vector_raw1,
                                                                vector_raw2,
                                                                n_elements);
      }
#  endif
#  ifdef GRN_WITH_XSIMD
      if (use_xsimd &&
          (sizeof(ElementType) * n_elements * 2) >= use_simd_threshold) {
        auto dispatched = xsimd::dispatch<xsimd::arch_list<
#    ifdef GRN_WITH_SIMD_AVX512
          xsimd::avx512dq,
#    endif
#    ifdef GRN_WITH_SIMD_AVX2
          xsimd::avx2,
#    endif
#    ifdef GRN_WITH_SIMD_AVX
          xsimd::avx,
#    endif
#    ifdef GRN_WITH_SIMD_NEON64
          xsimd::neon64,
#    endif
          xsimd::generic>>(difference_l2_norm_squared{});
        return dispatched(vector_raw1, vector_raw2, n_elements);
      }
#  endif
#endif
      ElementType square_sum = 0;
      for (size_t i = 0; i < n_elements; ++i) {
        auto difference = vector_raw1[i] - vector_raw2[i];
        square_sum += difference * difference;
      }
      return square_sum;
    }

    template <typename ElementType>
    float
    compute_distance_inner_product(grn_obj *vector1, grn_obj *vector2)
    {
      auto vector_raw1 =
        reinterpret_cast<const ElementType *>(GRN_BULK_HEAD(vector1));
      auto vector_raw2 =
        reinterpret_cast<const ElementType *>(GRN_BULK_HEAD(vector2));
      auto n_elements = GRN_BULK_VSIZE(vector1) / sizeof(ElementType);
#ifdef GRN_WITH_SIMD
#  ifdef GRN_WITH_SIMSIMD
      if (use_simsimd &&
          (sizeof(ElementType) * n_elements * 2) >= use_simd_threshold) {
#    ifdef GRN_WITH_SIMD_AVX512
        if (simsimd::capabilities & simsimd_cap_x86_avx512_k) {
          return simsimd::compute_distance_inner_product_avx512(vector_raw1,
                                                                vector_raw2,
                                                                n_elements);
        }
#    endif
#    ifdef GRN_WITH_SIMD_NEON64
        if (simsimd::capabilities & simsimd_cap_arm_neon_k) {
          return simsimd::compute_distance_inner_product_neon(vector_raw1,
                                                              vector_raw2,
                                                              n_elements);
        }
#    endif
        return simsimd::compute_distance_inner_product_serial(vector_raw1,
                                                              vector_raw2,
                                                              n_elements);
      }
#  endif
#  ifdef GRN_WITH_XSIMD
      if (use_xsimd &&
          (sizeof(ElementType) * n_elements * 2) >= use_simd_threshold) {
        auto dispatched = xsimd::dispatch<xsimd::arch_list<
#    ifdef GRN_WITH_SIMD_AVX512
          xsimd::avx512dq,
#    endif
#    ifdef GRN_WITH_SIMD_AVX2
          xsimd::avx2,
#    endif
#    ifdef GRN_WITH_SIMD_AVX
          xsimd::avx,
#    endif
#    ifdef GRN_WITH_SIMD_NEON64
          xsimd::neon64,
#    endif
          xsimd::generic>>(inner_product{});
        return dispatched(vector_raw1, vector_raw2, n_elements);
      }
#  endif
#endif
      ElementType multiplication_sum = 0;
      for (size_t i = 0; i < n_elements; ++i) {
        multiplication_sum += vector_raw1[i] * vector_raw2[i];
      }
      return 1 - multiplication_sum;
    }

    template <typename ElementType>
    float
    compute_distance_cosine(grn_obj *vector1, grn_obj *vector2)
    {
      auto vector_raw1 =
        reinterpret_cast<const ElementType *>(GRN_BULK_HEAD(vector1));
      auto vector_raw2 =
        reinterpret_cast<const ElementType *>(GRN_BULK_HEAD(vector2));
      auto n_elements = GRN_BULK_VSIZE(vector1) / sizeof(ElementType);
#ifdef GRN_WITH_SIMD
#  ifdef GRN_WITH_SIMSIMD
      if (use_simsimd &&
          (sizeof(ElementType) * n_elements * 2) >= use_simd_threshold) {
#    ifdef GRN_WITH_SIMD_AVX512
        if (simsimd::capabilities & simsimd_cap_x86_avx512_k) {
          return simsimd::compute_distance_cosine_avx512(vector_raw1,
                                                         vector_raw2,
                                                         n_elements);
        }
#    endif
#    ifdef GRN_WITH_SIMD_NEON64
        if (simsimd::capabilities & simsimd_cap_arm_neon_k) {
          return simsimd::compute_distance_cosine_neon(vector_raw1,
                                                       vector_raw2,
                                                       n_elements);
        }
#    endif
        return simsimd::compute_distance_cosine_serial(vector_raw1,
                                                       vector_raw2,
                                                       n_elements);
      }
#  endif
#  ifdef GRN_WITH_XSIMD
      if (use_xsimd &&
          (sizeof(ElementType) * n_elements * 2) >= use_simd_threshold) {
        auto dispatched = xsimd::dispatch<xsimd::arch_list<
#    ifdef GRN_WITH_SIMD_AVX512
          xsimd::avx512dq,
#    endif
#    ifdef GRN_WITH_SIMD_AVX2
          xsimd::avx2,
#    endif
#    ifdef GRN_WITH_SIMD_AVX
          xsimd::avx,
#    endif
#    ifdef GRN_WITH_SIMD_NEON64
          xsimd::neon64,
#    endif
          xsimd::generic>>(cosine{});
        return dispatched(vector_raw1, vector_raw2, n_elements);
      }
#  endif
#endif
      ElementType inner_product = 0;
      ElementType square_sum1 = 0;
      ElementType square_sum2 = 0;
      for (size_t i = 0; i < n_elements; ++i) {
        ElementType value1 = vector_raw1[i];
        ElementType value2 = vector_raw2[i];
        inner_product += value1 * value2;
        square_sum1 += value1 * value1;
        square_sum2 += value2 * value2;
      }
      if (numeric::is_zero(inner_product)) {
        return 1;
      } else {
        return 1 - (inner_product /
                    (std::sqrt(square_sum1) * std::sqrt(square_sum2)));
      }
    }
  } // namespace distance
} // namespace grn