1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
// Copyright (C) 2024 Sutou Kouhei <kou@clear-code.com>
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
#ifdef GRN_EMBEDDED
# define GRN_PLUGIN_FUNCTION_TAG functions_language_model
#endif
#include <groonga/plugin.h>
static grn_obj *
func_language_model_vectorize(grn_ctx *ctx,
int n_args,
grn_obj **args,
grn_user_data *user_data)
{
const char *tag = "language_model_vectorize():";
if (!(n_args == 2 || n_args == 3)) {
GRN_PLUGIN_ERROR(ctx,
GRN_INVALID_ARGUMENT,
"%s wrong number of arguments (%d for 2..3)",
tag,
n_args);
return NULL;
}
grn_obj *vector = NULL;
grn_language_model_loader *loader = grn_language_model_loader_open(ctx);
grn_language_model *model = NULL;
grn_language_model_inferencer *inferencer = NULL;
grn_obj *model_name = args[0];
if (!grn_obj_is_text_family_bulk(ctx, model_name)) {
grn_obj inspected;
GRN_TEXT_INIT(&inspected, 0);
grn_inspect(ctx, &inspected, model_name);
GRN_PLUGIN_ERROR(ctx,
GRN_INVALID_ARGUMENT,
"%s the 1st argument must be model name: %.*s",
tag,
(int)(GRN_TEXT_LEN(&inspected)),
GRN_TEXT_VALUE(&inspected));
GRN_OBJ_FIN(ctx, &inspected);
goto exit;
}
grn_language_model_loader_set_model(ctx,
loader,
GRN_TEXT_VALUE(model_name),
GRN_TEXT_LEN(model_name));
grn_obj *text = args[1];
if (!grn_obj_is_text_family_bulk(ctx, text)) {
grn_obj inspected;
GRN_TEXT_INIT(&inspected, 0);
grn_inspect(ctx, &inspected, text);
GRN_PLUGIN_ERROR(ctx,
GRN_INVALID_ARGUMENT,
"%s the 2nd argument must be text to vectorize: %.*s",
tag,
(int)(GRN_TEXT_LEN(&inspected)),
GRN_TEXT_VALUE(&inspected));
GRN_OBJ_FIN(ctx, &inspected);
goto exit;
}
grn_obj *options = NULL;
if (n_args == 3) {
options = args[2];
}
model = grn_language_model_loader_load(ctx, loader);
if (!model) {
GRN_PLUGIN_ERROR(ctx,
ctx->rc,
"%s failed to load model: %s",
tag,
ctx->errbuf);
goto exit;
}
inferencer = grn_language_model_open_inferencer(ctx, model);
if (!inferencer) {
GRN_PLUGIN_ERROR(ctx,
ctx->rc,
"%s failed to open model inferencer: %s",
tag,
ctx->errbuf);
goto exit;
}
vector =
grn_plugin_proc_alloc(ctx, user_data, GRN_DB_FLOAT32, GRN_OBJ_VECTOR);
if (!vector) {
return NULL;
}
grn_rc rc = grn_language_model_inferencer_vectorize(ctx,
inferencer,
GRN_TEXT_VALUE(text),
GRN_TEXT_LEN(text),
vector);
if (rc != GRN_SUCCESS) {
GRN_PLUGIN_ERROR(ctx,
ctx->rc,
"%s failed to vectorize: %s",
tag,
ctx->errbuf);
grn_obj_close(ctx, vector);
vector = NULL;
goto exit;
}
exit:
grn_language_model_inferencer_close(ctx, inferencer);
grn_language_model_close(ctx, model);
grn_language_model_loader_close(ctx, loader);
return vector;
}
static grn_rc
applier_language_model_vectorize(grn_ctx *ctx, grn_applier_data *data)
{
const char *tag = "language_model_vectorize():";
size_t n_args;
grn_obj **args = grn_applier_data_get_args(ctx, data, &n_args);
if (!(n_args == 2 || n_args == 3)) {
GRN_PLUGIN_ERROR(ctx,
GRN_INVALID_ARGUMENT,
"%s wrong number of arguments (%d for 2..3)",
tag,
(uint32_t)n_args);
return ctx->rc;
}
grn_language_model_loader *loader = grn_language_model_loader_open(ctx);
grn_language_model *model = NULL;
grn_language_model_inferencer *inferencer = NULL;
grn_obj *model_name = args[0];
if (!grn_obj_is_text_family_bulk(ctx, model_name)) {
grn_obj inspected;
GRN_TEXT_INIT(&inspected, 0);
grn_inspect(ctx, &inspected, model_name);
GRN_PLUGIN_ERROR(ctx,
GRN_INVALID_ARGUMENT,
"%s the 1st argument must be model name: %.*s",
tag,
(int)(GRN_TEXT_LEN(&inspected)),
GRN_TEXT_VALUE(&inspected));
GRN_OBJ_FIN(ctx, &inspected);
goto exit;
}
grn_language_model_loader_set_model(ctx,
loader,
GRN_TEXT_VALUE(model_name),
GRN_TEXT_LEN(model_name));
grn_obj *input_column = args[1];
if (!(grn_obj_is_text_family_scalar_column(ctx, input_column) ||
grn_obj_is_text_family_scalar_accessor(ctx, input_column))) {
grn_obj inspected;
GRN_TEXT_INIT(&inspected, 0);
grn_inspect(ctx, &inspected, input_column);
GRN_PLUGIN_ERROR(ctx,
GRN_INVALID_ARGUMENT,
"%s the 2nd argument must be a text family column "
"or accessor to vectorize: %.*s",
tag,
(int)(GRN_TEXT_LEN(&inspected)),
GRN_TEXT_VALUE(&inspected));
GRN_OBJ_FIN(ctx, &inspected);
goto exit;
}
grn_obj *options = NULL;
if (n_args == 3) {
options = args[2];
}
model = grn_language_model_loader_load(ctx, loader);
if (!model) {
GRN_PLUGIN_ERROR(ctx,
ctx->rc,
"%s failed to load model: %s",
tag,
ctx->errbuf);
goto exit;
}
inferencer = grn_language_model_open_inferencer(ctx, model);
if (!inferencer) {
GRN_PLUGIN_ERROR(ctx,
ctx->rc,
"%s failed to open model inferencer: %s",
tag,
ctx->errbuf);
goto exit;
}
grn_rc rc = grn_language_model_inferencer_vectorize_applier(ctx,
inferencer,
input_column,
data);
if (rc != GRN_SUCCESS) {
GRN_PLUGIN_ERROR(ctx,
ctx->rc,
"%s failed to vectorize: %s",
tag,
ctx->errbuf);
goto exit;
}
exit:
grn_language_model_inferencer_close(ctx, inferencer);
grn_language_model_close(ctx, model);
grn_language_model_loader_close(ctx, loader);
return ctx->rc;
}
grn_rc
GRN_PLUGIN_INIT(grn_ctx *ctx)
{
return ctx->rc;
}
grn_rc
GRN_PLUGIN_REGISTER(grn_ctx *ctx)
{
grn_rc rc = GRN_SUCCESS;
{
grn_obj *proc = grn_proc_create(ctx,
"language_model_vectorize",
-1,
GRN_PROC_FUNCTION,
func_language_model_vectorize,
NULL,
NULL,
0,
NULL);
grn_proc_set_applier(ctx, proc, applier_language_model_vectorize);
}
return rc;
}
grn_rc
GRN_PLUGIN_FIN(grn_ctx *ctx)
{
return GRN_SUCCESS;
}
|