1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
/*
Copyright (C) 2011 Brazil
Copyright (C) 2022 Sutou Kouhei <kou@clear-code.com>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "predictive-cursor.hpp"
#include <algorithm>
#include <cstring>
#include "trie.hpp"
namespace grn {
namespace dat {
PredictiveCursor::PredictiveCursor()
: trie_(NULL),
offset_(0),
limit_(MAX_UINT32),
flags_(PREDICTIVE_CURSOR),
buf_(),
cur_(0),
end_(0),
min_length_(0) {}
PredictiveCursor::~PredictiveCursor() {}
void PredictiveCursor::open(const Trie &trie,
const String &str,
UInt32 offset,
UInt32 limit,
UInt32 flags) {
GRN_DAT_THROW_IF(PARAM_ERROR, (str.ptr() == NULL) && (str.length() != 0));
flags = fix_flags(flags);
PredictiveCursor new_cursor(trie, offset, limit, flags);
new_cursor.init(str);
new_cursor.swap(this);
}
void PredictiveCursor::close() {
PredictiveCursor new_cursor;
new_cursor.swap(this);
}
const Key &PredictiveCursor::next() {
if (cur_ == end_) {
return Key::invalid_key();
}
if ((flags_ & ASCENDING_CURSOR) == ASCENDING_CURSOR) {
return ascending_next();
} else {
return descending_next();
}
}
PredictiveCursor::PredictiveCursor(const Trie &trie,
UInt32 offset, UInt32 limit, UInt32 flags)
: trie_(&trie),
offset_(offset),
limit_(limit),
flags_(flags),
buf_(),
cur_(0),
end_(0),
min_length_(0) {}
UInt32 PredictiveCursor::fix_flags(UInt32 flags) const {
const UInt32 cursor_type = flags & CURSOR_TYPE_MASK;
GRN_DAT_THROW_IF(PARAM_ERROR, (cursor_type != 0) &&
(cursor_type != PREDICTIVE_CURSOR));
flags |= PREDICTIVE_CURSOR;
const UInt32 cursor_order = flags & CURSOR_ORDER_MASK;
GRN_DAT_THROW_IF(PARAM_ERROR, (cursor_order != 0) &&
(cursor_order != ASCENDING_CURSOR) &&
(cursor_order != DESCENDING_CURSOR));
if (cursor_order == 0) {
flags |= ASCENDING_CURSOR;
}
const UInt32 cursor_options = flags & CURSOR_OPTIONS_MASK;
GRN_DAT_THROW_IF(PARAM_ERROR, cursor_options & ~(EXCEPT_EXACT_MATCH));
return flags;
}
void PredictiveCursor::init(const String &str) {
if (limit_ == 0) {
return;
}
min_length_ = str.length();
if ((flags_ & EXCEPT_EXACT_MATCH) == EXCEPT_EXACT_MATCH) {
++min_length_;
}
end_ = (offset_ > (MAX_UINT32 - limit_)) ? MAX_UINT32 : (offset_ + limit_);
UInt32 node_id = ROOT_NODE_ID;
for (UInt32 i = 0; i < str.length(); ++i) {
const Base base = trie_->ith_node(node_id).base();
if (base.is_linker()) {
if (offset_ == 0) {
const Key &key = trie_->get_key(base.key_pos());
if ((key.length() >= str.length()) &&
(key.str().substr(0, str.length()).compare(str, i) == 0)) {
if ((flags_ & ASCENDING_CURSOR) == ASCENDING_CURSOR) {
node_id |= IS_ROOT_FLAG;
}
buf_.push_back(node_id);
}
}
return;
}
node_id = base.offset() ^ str[i];
if (trie_->ith_node(node_id).label() != str[i]) {
return;
}
}
if ((flags_ & ASCENDING_CURSOR) == ASCENDING_CURSOR) {
node_id |= IS_ROOT_FLAG;
}
buf_.push_back(node_id);
}
void PredictiveCursor::swap(PredictiveCursor *cursor) {
std::swap(trie_, cursor->trie_);
std::swap(offset_, cursor->offset_);
std::swap(limit_, cursor->limit_);
std::swap(flags_, cursor->flags_);
buf_.swap(&cursor->buf_);
std::swap(cur_, cursor->cur_);
std::swap(end_, cursor->end_);
std::swap(min_length_, cursor->min_length_);
}
const Key &PredictiveCursor::ascending_next() {
while (!buf_.empty()) {
const bool is_root = (buf_.back() & IS_ROOT_FLAG) == IS_ROOT_FLAG;
const UInt32 node_id = buf_.back() & ~IS_ROOT_FLAG;
buf_.pop_back();
const Node node = trie_->ith_node(node_id);
if (!is_root && (node.sibling() != INVALID_LABEL)) {
buf_.push_back(node_id ^ node.label() ^ node.sibling());
}
if (node.is_linker()) {
const Key &key = trie_->get_key(node.key_pos());
if (key.length() >= min_length_) {
if (cur_++ >= offset_) {
return key;
}
}
} else if (node.child() != INVALID_LABEL) {
buf_.push_back(node.offset() ^ node.child());
}
}
return Key::invalid_key();
}
const Key &PredictiveCursor::descending_next() {
while (!buf_.empty()) {
const bool post_order = (buf_.back() & POST_ORDER_FLAG) == POST_ORDER_FLAG;
const UInt32 node_id = buf_.back() & ~POST_ORDER_FLAG;
const Base base = trie_->ith_node(node_id).base();
if (post_order) {
buf_.pop_back();
if (base.is_linker()) {
const Key &key = trie_->get_key(base.key_pos());
if (key.length() >= min_length_) {
if (cur_++ >= offset_) {
return key;
}
}
}
} else {
buf_.back() |= POST_ORDER_FLAG;
UInt32 label = trie_->ith_node(node_id).child();
while (label != INVALID_LABEL) {
buf_.push_back(base.offset() ^ label);
label = trie_->ith_node(base.offset() ^ label).sibling();
}
}
}
return Key::invalid_key();
}
} // namespace dat
} // namespace grn
|