File: language_model.cpp

package info (click to toggle)
groonga 16.0.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 188,416 kB
  • sloc: ansic: 772,827; cpp: 52,396; ruby: 40,556; javascript: 10,250; yacc: 7,045; sh: 5,627; python: 2,821; makefile: 1,679
file content (1803 lines) | stat: -rw-r--r-- 55,965 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
// Copyright (C) 2024-2025  Sutou Kouhei <kou@clear-code.com>
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA

#include "grn_ctx.hpp"
#include "grn_db.h"
#include "grn_http_client.h"
#include "grn_language_model.hpp"
#include "grn_progress.h"
#include "grn_util.h"

#include <groonga/smart_obj.hpp>

#ifdef GRN_WITH_LLAMA_CPP
#  include <ggml-backend.h>
#  include <llama.h>
#endif

#ifdef GRN_WITH_SIMDJSON
#  include <simdjson.h>
#endif

#include <algorithm>
#include <cerrno>
#include <cmath>
#include <condition_variable>
#include <cstring>
#include <fstream>
#include <functional>
#include <map>
#include <mutex>

#define GRN_LM_ERROR(default_rc, message)                                      \
  do {                                                                         \
    grn_rc rc = ctx->rc == GRN_SUCCESS ? (default_rc) : ctx->rc;               \
    char errbuf[GRN_CTX_MSGSIZE];                                              \
    grn_strcpy(errbuf, GRN_CTX_MSGSIZE, ctx->errbuf);                          \
    ERR(rc, "%s: %s", (message), errbuf);                                      \
  } while (false)

namespace grn {
  namespace language_model {
#ifdef GRN_WITH_LLAMA_CPP
    namespace {
      void
      log_callback(ggml_log_level level, const char *text, void *user_data)
      {
        grn_ctx *ctx = static_cast<grn_ctx *>(user_data);
        switch (level) {
        case GGML_LOG_LEVEL_ERROR:
          ERR(GRN_UNKNOWN_ERROR, "%s", text);
          break;
        case GGML_LOG_LEVEL_WARN:
          if (grn_logger_pass(ctx, GRN_LOG_WARNING)) {
            grn_logger_put(ctx,
                           GRN_LOG_WARNING,
                           __FILE__,
                           __LINE__,
                           __FUNCTION__,
                           "%s",
                           text);
          }
          break;
        case GGML_LOG_LEVEL_INFO:
          if (grn_logger_pass(ctx, GRN_LOG_INFO)) {
            grn_logger_put(ctx,
                           GRN_LOG_INFO,
                           __FILE__,
                           __LINE__,
                           __FUNCTION__,
                           "%s",
                           text);
          }
          break;
        case GGML_LOG_LEVEL_DEBUG:
          if (grn_logger_pass(ctx, GRN_LOG_DEBUG)) {
            grn_logger_put(ctx,
                           GRN_LOG_DEBUG,
                           __FILE__,
                           __LINE__,
                           __FUNCTION__,
                           "%s",
                           text);
          }
          break;
        default:
          ERR(GRN_UNKNOWN_ERROR, "%s", text);
          break;
        }
      }
    } // namespace
#endif

    static char ggml_backends_dir[GRN_ENV_BUFFER_SIZE];
    static char language_models_dir[GRN_ENV_BUFFER_SIZE];
    static char language_model_download_cache_dir[GRN_ENV_BUFFER_SIZE];

    void
    init_from_env()
    {
      grn_getenv("GRN_GGML_BACKENDS_DIR",
                 ggml_backends_dir,
                 GRN_ENV_BUFFER_SIZE);
      grn_getenv("GRN_LANGUAGE_MODELS_DIR",
                 language_models_dir,
                 GRN_ENV_BUFFER_SIZE);
      grn_getenv("GRN_LANGUAGE_MODEL_DOWNLOAD_CACHE_DIR",
                 language_model_download_cache_dir,
                 GRN_ENV_BUFFER_SIZE);
    }

#ifdef GRN_WITH_LLAMA_CPP
    struct ModelCacheKey {
      std::string path;
      int32_t n_gpu_layers;
    };

    bool
    operator<(const ModelCacheKey &a, const ModelCacheKey &b)
    {
      return std::tie(a.path, a.n_gpu_layers) <
             std::tie(b.path, b.n_gpu_layers);
    }

    struct ModelCache {
      ModelCache() = default;
      ~ModelCache() = default;

      std::shared_ptr<LanguageModel>
      get(const ModelCacheKey &key,
          std::function<std::shared_ptr<LanguageModel>()> load)
      {
        std::lock_guard<std::mutex> lock(mutex_);
        auto it = models_.find(key);
        if (it != models_.end()) {
          return it->second;
        }

        auto model = load();
        if (model) {
          models_[key] = model;
        }
        return model;
      }

      void
      clear()
      {
        models_.clear();
      }

    private:
      std::map<ModelCacheKey, std::shared_ptr<LanguageModel>> models_;
      std::mutex mutex_;
    };

    static ModelCache model_cache;

    static bool initialized = false;
    static std::once_flag initialize_once;

    namespace {
#  ifdef GRN_WITH_LLAMA_CPP_BUNDLED
#    ifdef _WIN32
      const char *
      get_default_ggml_backends_dir()
      {
        static char *windows_ggml_backends_dir = nullptr;
        static char windows_ggml_backends_dir_buffer[PATH_MAX];
        if (!windows_ggml_backends_dir) {
          auto base_dir = grn_windows_base_dir();
          auto base_dir_length = strlen(base_dir);
          grn_strcpy(windows_ggml_backends_dir_buffer, PATH_MAX, base_dir);
          grn_strcat(windows_ggml_backends_dir_buffer, PATH_MAX, "/");
          grn_strcat(windows_ggml_backends_dir_buffer,
                     PATH_MAX,
                     GRN_RELATIVE_GGML_BACKENDS_DIR);
          windows_ggml_backends_dir = windows_ggml_backends_dir_buffer;
        }
        return windows_ggml_backends_dir;
      }
#    else
      const char *
      get_default_ggml_backends_dir()
      {
        return GRN_GGML_BACKENDS_DIR;
      }
#    endif

      const char *
      get_ggml_backends_dir()
      {
        if (ggml_backends_dir[0]) {
          return ggml_backends_dir;
        } else {
          return get_default_ggml_backends_dir();
        }
      }
#  endif

      void
      init_external_libraries()
      {
        llama_log_set(log_callback, &grn_gctx);
#  ifdef GRN_WITH_LLAMA_CPP_BUNDLED
        ggml_backend_load_all_from_path(get_ggml_backends_dir());
#  endif
        llama_backend_init();
        initialized = true;
      }

      void
      ensure_init_external_libraries()
      {
        std::call_once(initialize_once, init_external_libraries);
      }
    } // namespace
#else
    namespace {
      void
      ensure_init_external_libraries()
      {
      }
    } // namespace
#endif

    void
    fin_external_libraries()
    {
#ifdef GRN_WITH_LLAMA_CPP
      if (!initialized) return;

      model_cache.clear();
      llama_backend_free();
      llama_log_set(nullptr, nullptr);
#endif
    }

#ifdef GRN_WITH_LLAMA_CPP
#  ifdef _WIN32
    static char *windows_language_models_dir = NULL;
    static char windows_language_models_dir_buffer[PATH_MAX];
    namespace {
      const char *
      default_system_language_models_dir()
      {
        if (!windows_language_models_dir) {
          const char *base_dir;
          const char *relative_path = GRN_RELATIVE_LANGUAGE_MODELS_DIR;

          base_dir = grn_windows_base_dir();
          grn_strcpy(windows_language_models_dir_buffer, PATH_MAX, base_dir);
          grn_strcat(windows_language_models_dir_buffer, PATH_MAX, "/");
          grn_strcat(windows_language_models_dir_buffer,
                     PATH_MAX,
                     relative_path);
          windows_language_models_dir = windows_language_models_dir_buffer;
        }
        return windows_language_models_dir;
      }
    } // namespace
#  else
    namespace {
      const char *
      default_system_language_models_dir()
      {
        return GRN_LANGUAGE_MODELS_DIR;
      }
    } // namespace
#  endif

    const char *
    system_language_models_dir()
    {
      if (language_models_dir[0]) {
        return language_models_dir;
      } else {
        return default_system_language_models_dir();
      }
    }

    static std::mutex capture_error_mutex;
    class CaptureError {
    public:
      CaptureError(grn_ctx *ctx) : lock_(capture_error_mutex)
      {
        llama_log_set(log_callback, ctx);
      }

      ~CaptureError() { llama_log_set(log_callback, &grn_gctx); }

    private:
      std::lock_guard<std::mutex> lock_;
    };
#endif
  }; // namespace language_model

  class LanguageModel::Impl {
#ifdef GRN_WITH_LLAMA_CPP
  public:
    Impl(llama_model *model)
      : model_(model),
        default_pooling_type_(LLAMA_POOLING_TYPE_NONE)
    {
      auto params = llama_context_default_params();
      params.n_ctx = 0;
      params.embeddings = true;
      auto llama_ctx = llama_init_from_model(model_, params);
      if (llama_ctx) {
        default_pooling_type_ = llama_pooling_type(llama_ctx);
        llama_free(llama_ctx);
      }
    }

    ~Impl() { llama_model_free(model_); }

    llama_model *
    get_raw()
    {
      return model_;
    }

    enum llama_pooling_type
    default_pooling_type()
    {
      return default_pooling_type_;
    }

  private:
    llama_model *model_;
    enum llama_pooling_type default_pooling_type_;
#endif
  };

  LanguageModel::LanguageModel(Impl *impl) : impl_(impl) {}

  LanguageModel::~LanguageModel() = default;

  std::shared_ptr<LanguageModel>
  LanguageModelLoader::load()
  {
    auto ctx = ctx_;

#ifdef GRN_WITH_LLAMA_CPP
    if (model_path.empty()) {
      ERR(GRN_INVALID_ARGUMENT,
          "[language-model-loader][load] model path is missing");
      return nullptr;
    }

    auto model = language_model::model_cache.get(
      language_model::ModelCacheKey{model_path, n_gpu_layers},
      [this]() -> std::shared_ptr<LanguageModel> {
        auto ctx = ctx_;
        auto params = llama_model_default_params();
        params.n_gpu_layers = n_gpu_layers;
        params.progress_callback = [](float progress, void *ctx) {
          return true;
        };

        {
          language_model::CaptureError capture(ctx_);
          auto raw_model =
            llama_model_load_from_file(model_path.c_str(), params);
          if (!raw_model) {
            GRN_LM_ERROR(GRN_INVALID_ARGUMENT,
                         "[language-model-loader][load] failed to load model");
            return nullptr;
          }

          if (llama_model_has_encoder(raw_model) &&
              !llama_model_has_decoder(raw_model)) {
            ERR(GRN_INVALID_ARGUMENT,
                "[language-model-loader][load] encoder-decoder model isn't "
                "supported yet: <%s>",
                model_path.c_str());
            llama_model_free(raw_model);
            return nullptr;
          }

          return std::make_shared<LanguageModel>(
            new LanguageModel::Impl(raw_model));
        }
      });
    return model;
#else
    ERR(GRN_FUNCTION_NOT_IMPLEMENTED,
        "[language-model-loader][load] llama.cpp isn't enabled");
    return nullptr;
#endif
  }

  class LanguageModelInferencer::Impl {
#ifdef GRN_WITH_LLAMA_CPP
    struct BatchReleaser {
      llama_batch *batch_;

      BatchReleaser(llama_batch *batch) : batch_(batch) {}
      ~BatchReleaser()
      {
        if (batch_) {
          llama_batch_free(*batch_);
        }
      }
    };

#  ifdef GRN_WITH_LLAMA_CPP
    class Vectorizer {
    public:
      Vectorizer(llama_model *model_raw,
                 enum llama_pooling_type default_pooling_type)
        : llama_ctx_(nullptr),
          llama_model_(model_raw),
          n_dimensions_(llama_model_n_embd(llama_model_)),
          has_encoder_(llama_model_has_encoder(llama_model_)),
          has_decoder_(llama_model_has_decoder(llama_model_)),
          // We want document vector not token vectors. We want to use the
          // default pooling type in a model but it seems that most models
          // don't provide the default pooling type (LLAMA_POOLING_TYPE_NONE
          // is used). If LLAMA_POOLING_TYPE_NONE is used, token vectors are
          // generated. So we force to use LLAMA_POOLING_TYPE_MEAN here.
          pooling_type_(default_pooling_type == LLAMA_POOLING_TYPE_NONE
                          ? LLAMA_POOLING_TYPE_MEAN
                          : default_pooling_type),
          max_n_tokens_limit_(llama_model_n_ctx_train(llama_model_)),
          max_n_tokens_(llama_context_default_params().n_ubatch),
          pooling_buffer_(n_dimensions_)
      {
      }

      ~Vectorizer()
      {
        if (llama_ctx_) {
          llama_free(llama_ctx_);
        }
      }

      void
      vectorize(grn_ctx *ctx,
                std::string_view text,
                grn_obj *output_vector,
                const char *tag)
      {
        std::vector<llama_token> tokens;
        tokenize(text, tokens);
        auto n_tokens = static_cast<uint32_t>(tokens.size());
        adjust_max_n_tokens(ctx, GRN_ID_NIL, n_tokens, tag);
        auto batch = llama_batch_init(max_n_tokens_, 0, 1);
        BatchReleaser batch_releaser(&batch);
        if (n_tokens > max_n_tokens_) {
          const llama_seq_id sequence_id = 0;
          auto n_chunks = ((n_tokens - 1) / max_n_tokens_) + 1;
          for (size_t i = 0; i < n_chunks; ++i) {
            auto offset = max_n_tokens_ * i;
            auto size =
              std::min(n_tokens - offset, static_cast<size_t>(max_n_tokens_));
            add_tokens(batch, tokens, offset, size, sequence_id);

            if (!vectorize_batch(ctx, batch, sequence_id + 1)) {
              return;
            }

            if (!pool_embedding(ctx, batch, sequence_id, i, tag)) {
              return;
            }

            batch.n_tokens = 0;
            offset += size;
          }

          normalize_embedding(
            pooling_buffer_.data(),
            [&](int32_t dimension, float normalized_value) {
              GRN_FLOAT32_PUT(ctx, output_vector, normalized_value);
            });
        } else {
          const llama_seq_id sequence_id = 0;
          add_tokens(batch, tokens, 0, tokens.size(), sequence_id);

          if (!vectorize_batch(ctx, batch, sequence_id + 1)) {
            return;
          }

          if (!store_embedding(ctx, batch, sequence_id, output_vector, tag)) {
            return;
          }
        }
      }

      template <typename IDProducer, typename Output>
      void
      vectorize_in_batch(grn_ctx *ctx,
                         IDProducer id_producer,
                         grn_obj *input_column,
                         std::string_view prefix,
                         Output output,
                         const char *tag)
      {
        struct Target {
          grn_id id;
          size_t current_chunk_index;
          size_t n_chunks;
        };

        std::vector<Target> targets;
        auto batch = llama_batch_init(max_n_tokens_, 0, 1);
        BatchReleaser batch_releaser(&batch);

        grn_obj embedding;
        GRN_FLOAT32_INIT(&embedding, GRN_OBJ_VECTOR);
        grn::UniqueObj smart_embedding(ctx, &embedding);

        auto flush_batch = [&]() {
          const auto n_sequences = targets.size();
          if (!vectorize_batch(ctx, batch, n_sequences)) {
            return false;
          }
          for (size_t i = 0; i < n_sequences; ++i) {
            const auto &target = targets[i];
            const auto sequence_id = static_cast<llama_seq_id>(i);
            if (target.n_chunks == 1) {
              GRN_BULK_REWIND(&embedding);
              if (!store_embedding(ctx, batch, sequence_id, &embedding, tag)) {
                return false;
              }
              output(ctx, target.id, &embedding);
            } else {
              if (!pool_embedding(ctx,
                                  batch,
                                  sequence_id,
                                  target.current_chunk_index,
                                  tag)) {
                return false;
              }
              if (target.current_chunk_index == target.n_chunks - 1) {
                GRN_BULK_REWIND(&embedding);
                normalize_embedding(
                  pooling_buffer_.data(),
                  [&](int32_t dimension, float normalized_value) {
                    GRN_FLOAT32_PUT(ctx, &embedding, normalized_value);
                  });
                output(ctx, target.id, &embedding);
              }
            }
          }
          targets.clear();
          batch.n_tokens = 0;
          return true;
        };

        std::vector<llama_token> tokens;

        auto batch_is_full = [&](uint32_t n_tokens) {
          auto next_n_tokens = batch.n_tokens + n_tokens;
          if (next_n_tokens > max_n_tokens_) {
            return true;
          }

          auto n_sequences = static_cast<uint32_t>(targets.size());
          if (n_sequences == 0) {
            return false;
          }

          auto actual_next_n_tokens =
            normalize_n_tokens(next_n_tokens, n_sequences);
          return actual_next_n_tokens < max_n_tokens_;
        };

        grn_id id;
        while ((id = id_producer()) != GRN_ID_NIL) {
          uint32_t input_size = 0;
          auto input = grn_obj_get_value_(ctx, input_column, id, &input_size);
          if (prefix.empty()) {
            tokenize(input, tokens);
          } else {
            auto prefixed_input = std::string(prefix);
            prefixed_input.append(input, input_size);
            tokenize(prefixed_input, tokens);
          }
          auto n_tokens = static_cast<uint32_t>(tokens.size());
          if (n_tokens == 0) {
            continue;
          }
          if (batch_is_full(n_tokens)) {
            if (batch.n_tokens > 0) {
              if (!flush_batch()) {
                return;
              }
            }
            if (adjust_max_n_tokens(ctx, id, n_tokens, tag)) {
              llama_batch_free(batch);
              batch_releaser.batch_ = nullptr;
              batch = llama_batch_init(max_n_tokens_, 0, 1);
              batch_releaser.batch_ = &batch;
            }
          }
          auto n_chunks = ((n_tokens - 1) / max_n_tokens_) + 1;
          for (size_t i = 0; i < n_chunks; ++i) {
            auto offset = max_n_tokens_ * i;
            auto size =
              std::min(n_tokens - offset, static_cast<size_t>(max_n_tokens_));
            if (batch.n_tokens > 0 && batch_is_full(size)) {
              if (!flush_batch()) {
                return;
              }
            }
            add_tokens(batch, tokens, offset, size, targets.size());
            targets.push_back({id, i, n_chunks});
          }
        }
        if (targets.size() > 0) {
          if (!flush_batch()) {
            return;
          }
        }
      }

      template <typename Output>
      void
      vectorize_in_batch(grn_ctx *ctx,
                         grn_table_cursor *cursor,
                         grn_obj *input_column,
                         std::string_view prefix,
                         Output output,
                         const char *tag)
      {
        vectorize_in_batch(
          ctx,
          [&]() { return grn_table_cursor_next(ctx, cursor); },
          input_column,
          prefix,
          output,
          tag);
      }

      template <typename Output>
      void
      vectorize_in_batch(grn_ctx *ctx,
                         const std::vector<grn_id> &ids,
                         grn_obj *input_column,
                         std::string_view prefix,
                         Output output,
                         const char *tag)
      {
        size_t i = 0;
        vectorize_in_batch(
          ctx,
          [&]() {
            grn_id id = GRN_ID_NIL;
            if (i < ids.size()) {
              id = ids[i];
            }
            ++i;
            return id;
          },
          input_column,
          prefix,
          output,
          tag);
      }

    private:
      llama_context *llama_ctx_;
      llama_model *llama_model_;
      const int32_t n_dimensions_;
      const bool has_encoder_;
      const bool has_decoder_;
      const enum llama_pooling_type pooling_type_;
      const uint32_t max_n_tokens_limit_;
      uint32_t max_n_tokens_;
      std::vector<float> pooling_buffer_;

      void
      tokenize(std::string_view text, std::vector<llama_token> &tokens)
      {
        constexpr auto add_special = true;
        constexpr auto parse_special = false;
        // Guess enough size
        int n_tokens = text.length() + 2 * add_special;
        if (tokens.capacity() < static_cast<size_t>(n_tokens)) {
          tokens.reserve(n_tokens);
        }
        auto vocab = llama_model_get_vocab(llama_model_);
        n_tokens = llama_tokenize(vocab,
                                  text.data(),
                                  text.length(),
                                  tokens.data(),
                                  tokens.size(),
                                  add_special,
                                  parse_special);
        if (n_tokens < 0) {
          // If guessed size isn't enough, use the real size.
          tokens.resize(-n_tokens);
          llama_tokenize(vocab,
                         text.data(),
                         text.length(),
                         tokens.data(),
                         tokens.size(),
                         add_special,
                         parse_special);
        } else {
          tokens.resize(n_tokens);
        }
      }

      // Return true when max_n_tokens_ is updated.
      bool
      adjust_max_n_tokens(grn_ctx *ctx,
                          grn_id id,
                          size_t n_tokens,
                          const char *tag)
      {
        bool max_n_tokens_updated = false;
        if (n_tokens == 0) {
          return max_n_tokens_updated;
        }

        if (max_n_tokens_ != max_n_tokens_limit_) {
          while (max_n_tokens_ < n_tokens) {
            max_n_tokens_ *= 2;
          }
          if (max_n_tokens_ > max_n_tokens_limit_) {
            max_n_tokens_ = max_n_tokens_limit_;
          }
          max_n_tokens_updated = true;
        }

        return max_n_tokens_updated;
      }

      // TODO: We want to use std::span instead of std::vector +
      // tokens_star + toekns_size. It requires C++20 but llama.cpp
      // isn't C++20 ready.
      void
      add_tokens(llama_batch &batch,
                 const std::vector<llama_token> &tokens,
                 size_t tokens_start,
                 size_t n_target_tokens,
                 llama_seq_id sequence_id)
      {
        const auto offset = batch.n_tokens;
        memcpy(batch.token + offset,
               tokens.data() + tokens_start,
               sizeof(llama_token) * n_target_tokens);
        for (size_t i = 0; i < n_target_tokens; ++i) {
          const auto offset_i = offset + i;
          batch.pos[offset_i] = i;
          batch.n_seq_id[offset_i] = 1;
          batch.seq_id[offset_i][0] = sequence_id;
          batch.logits[offset_i] = true;
        }
        batch.n_tokens += n_target_tokens;
      }

      // n_tokens must be multiple of n_sequences.
      uint32_t
      normalize_n_tokens(uint32_t n_tokens, uint32_t n_sequences)
      {
        if (n_tokens < GGML_KQ_MASK_PAD) {
          n_tokens = GGML_KQ_MASK_PAD;
        }
        return ((n_tokens + (n_sequences - 1)) / n_sequences) * n_sequences;
      }

      bool
      vectorize_batch(grn_ctx *ctx,
                      llama_batch &batch,
                      uint32_t max_n_sequences)
      {
        if (llama_ctx_ && llama_n_ubatch(llama_ctx_) == max_n_tokens_ &&
            llama_n_seq_max(llama_ctx_) == max_n_sequences) {
          auto memory = llama_get_memory(llama_ctx_);
          if (memory) {
            llama_memory_clear(memory, true);
          }
        } else {
          if (llama_ctx_) {
            llama_free(llama_ctx_);
          }
          auto params = llama_context_default_params();
          params.n_ctx =
            llama_model_n_ctx_train(llama_model_) * max_n_sequences;
          params.embeddings = true;
          params.n_batch = normalize_n_tokens(batch.n_tokens, max_n_sequences);
          params.n_ubatch = params.n_batch;
          params.n_seq_max = max_n_sequences;
          params.pooling_type = pooling_type_;
          llama_ctx_ = llama_init_from_model(llama_model_, params);
          if (!llama_ctx_) {
            return false;
          }
        }

        if (has_encoder_ && !has_decoder_) {
          // encoder-only model
          if (llama_encode(llama_ctx_, batch) < 0) {
            GRN_LM_ERROR(
              GRN_UNKNOWN_ERROR,
              "[language-model-inferencer][vectorize-batch] failed to encode");
            return false;
          }
        } else if (!has_encoder_ && has_decoder_) {
          // decoder-only model
          if (llama_decode(llama_ctx_, batch) < 0) {
            GRN_LM_ERROR(
              GRN_UNKNOWN_ERROR,
              "[language-model-inferencer][vectorize-batch] failed to decode");
            return false;
          }
        } else {
          GRN_LM_ERROR(
            GRN_FUNCTION_NOT_IMPLEMENTED,
            "[language-model-inferencer][vectorize-batch] "
            "model that has both of encoder and docoder isn't supported yet");
          return false;
        }

        return true;
      }

      const float *
      get_embedding(grn_ctx *ctx,
                    llama_batch &batch,
                    llama_seq_id id,
                    const char *tag)
      {
        // pooling_type_ must not be LLAMA_POOLING_TYPE_NONE.
        auto raw_embedding = llama_get_embeddings_seq(llama_ctx_, id);
        if (!raw_embedding) {
          std::string message(tag);
          message += " failed to get embedding";
          GRN_LM_ERROR(GRN_UNKNOWN_ERROR, message.data());
          return nullptr;
        }
        return raw_embedding;
      }

      template <typename Output>
      void
      normalize_embedding(const float *raw_embedding, Output output)
      {
        // TODO: grn::distance::compute_l2_norm()
        float square_sum = 0.0;
        for (int32_t dimension = 0; dimension < n_dimensions_; ++dimension) {
          square_sum += raw_embedding[dimension] * raw_embedding[dimension];
        }
        auto magnitude = std::sqrt(square_sum);
        const float normalize = magnitude > 0.0 ? 1.0 / magnitude : 0.0f;
        for (int32_t dimension = 0; dimension < n_dimensions_; ++dimension) {
          auto normalized_value = raw_embedding[dimension] * normalize;
          output(dimension, normalized_value);
        }
      }

      bool
      pool_embedding(grn_ctx *ctx,
                     llama_batch &batch,
                     llama_seq_id id,
                     size_t n_pooled_embeddings,
                     const char *tag)
      {
        auto raw_embedding = get_embedding(ctx, batch, id, tag);
        if (!raw_embedding) {
          return false;
        }
        for (int32_t dimension = 0; dimension < n_dimensions_; ++dimension) {
          // Use average pooling to generate document embedding from
          // split embeddings. This is a SWEM-aver like approach.
          //
          // See also: Baseline Needs More Love: On Simple
          // Word-Embedding-Based Models and Associated Pooling
          // Mechanisms: https://arxiv.org/abs/1805.09843
          //
          // TODO: We can improve error of incremental/online average
          // computation. For example, merging averages, using Kahan
          // summation algorithm and so on.
          if (n_pooled_embeddings == 0) {
            pooling_buffer_[dimension] = raw_embedding[dimension];
          } else {
            pooling_buffer_[dimension] +=
              (raw_embedding[dimension] - pooling_buffer_[dimension]) /
              (n_pooled_embeddings + 1);
          }
        }
        return true;
      }

      bool
      store_embedding(grn_ctx *ctx,
                      llama_batch &batch,
                      llama_seq_id id,
                      grn_obj *output_vector,
                      const char *tag)
      {
        auto raw_embedding = get_embedding(ctx, batch, id, tag);
        if (!raw_embedding) {
          return false;
        }
        auto output = [&](int32_t dimension, float normalized_value) {
          GRN_FLOAT32_PUT(ctx, output_vector, normalized_value);
        };
        normalize_embedding(raw_embedding, output);
        return true;
      }
    };
#  endif

#endif
  public:
#ifdef GRN_WITH_LLAMA_CPP
    Impl(std::shared_ptr<LanguageModel> model,
         llama_model *model_raw,
         enum llama_pooling_type default_pooling_type)
      : model_(std::move(model)),
        llama_model_(model_raw),
        default_pooling_type_(default_pooling_type),
        vectorizer_(llama_model_, default_pooling_type_),
        input_column_value_prefix_(),
        progress_callback_(nullptr),
        progress_callback_user_data_(nullptr)
    {
    }

    ~Impl() {}
#endif

    void
    set_input_column_value_prefix(std::string prefix)
    {
      input_column_value_prefix_ = std::move(prefix);
    }

    void
    set_progress_callback(grn_progress_callback_func callback, void *user_data)
    {
      progress_callback_ = callback;
      progress_callback_user_data_ = user_data;
    }

    void
    vectorize(grn_ctx *ctx, std::string_view text, grn_obj *output_vector)
    {
      const char *tag = "[language-model-inferencer][vectorize]";
#ifdef GRN_WITH_LLAMA_CPP
      language_model::CaptureError capture(ctx);
      vectorizer_.vectorize(ctx, text, output_vector, tag);
#else
      ERR(GRN_FUNCTION_NOT_IMPLEMENTED, "%s llama.cpp isn't enabled", tag);
#endif
    }

    template <typename Output>
    void
    vectorize_in_batch(grn_ctx *ctx,
                       grn_table_cursor *cursor,
                       grn_obj *input_column,
                       Output output)
    {
      const char *tag = "[language-model-inferencer][vectorize-in-batch]";
#ifdef GRN_WITH_LLAMA_CPP
      language_model::CaptureError capture(ctx);

      grn_progress progress;
      progress.type = GRN_PROGRESS_LANGUAGE_MODEL_INFERENCER;

      auto task_executor = grn_ctx_get_task_executor(ctx);
      if (!task_executor->is_parallel()) {
        if (progress_callback_) {
          progress.value.language_model_inferencer.n_processed_records = 1;
          auto output_with_progress =
            [&](grn_ctx *ctx, grn_id id, grn_obj *embedding) {
              output(ctx, id, embedding);
              progress_callback_(ctx, &progress, progress_callback_user_data_);
            };
          vectorizer_.vectorize_in_batch(ctx,
                                         cursor,
                                         input_column,
                                         input_column_value_prefix_,
                                         output_with_progress,
                                         tag);
        } else {
          vectorizer_.vectorize_in_batch(ctx,
                                         cursor,
                                         input_column,
                                         input_column_value_prefix_,
                                         output,
                                         tag);
        }
        return;
      }

      auto parallel_tag = std::string(tag) + "[parallel]";

      size_t n_records_per_task = 100; // No reason
      std::mutex mutex;
      std::condition_variable cv;
      uintptr_t task_id = 0;
      struct ProcessedTask {
        ProcessedTask(grn_ctx *ctx) : ctx_(ctx), ids(), embeddings() {}
        ~ProcessedTask()
        {
          for (auto &embedding : embeddings) {
            GRN_OBJ_FIN(ctx_, &embedding);
          }
        }
        grn_ctx *ctx_;
        std::vector<grn_id> ids;
        std::vector<grn_obj> embeddings;
      };
      std::map<uintptr_t, std::unique_ptr<ProcessedTask>> processed_tasks;

      auto execute = [&](uintptr_t task_id, std::vector<grn_id> target_ids) {
        auto child_ctx = grn_ctx_pull_child(ctx);
        grn::ChildCtxReleaser child_ctx_releaser(ctx, child_ctx);
        Vectorizer vectorizer(llama_model_, default_pooling_type_);
        auto processed_task = std::make_unique<ProcessedTask>(ctx);
        std::vector<std::vector<float>> embeddings;
        vectorizer.vectorize_in_batch(
          child_ctx,
          std::move(target_ids),
          input_column,
          input_column_value_prefix_,
          [&](grn_ctx *output_ctx, grn_id id, grn_obj *embedding) {
            processed_task->ids.push_back(id);
            processed_task->embeddings.emplace_back();
            auto &processed_embedding = processed_task->embeddings.back();
            GRN_FLOAT32_INIT(&processed_embedding, GRN_OBJ_VECTOR);
            grn_bulk_write(output_ctx,
                           &processed_embedding,
                           GRN_BULK_HEAD(embedding),
                           GRN_BULK_VSIZE(embedding));
          },
          parallel_tag.data());
        if (child_ctx->rc != GRN_SUCCESS) {
          return false;
        }
        {
          std::lock_guard<std::mutex> lock(mutex);
          processed_tasks.insert(
            std::make_pair(task_id, std::move(processed_task)));
        }
        cv.notify_one();
        return child_ctx->rc == GRN_SUCCESS;
      };

      std::vector<grn_id> target_ids;
      auto flush_task = [&]() {
        if (!task_executor->execute(
              task_id,
              [&, task_id, target_ids]() {
                return execute(task_id, std::move(target_ids));
              },
              tag)) {
          task_executor->wait_all();
          return false;
        }
        ++task_id;
        target_ids.clear();
        return true;
      };
      while (true) {
        auto id = grn_table_cursor_next(ctx, cursor);
        if (id == GRN_ID_NIL) {
          if (!target_ids.empty()) {
            if (!flush_task()) {
              return;
            }
          }
          break;
        }
        target_ids.push_back(id);
        if (target_ids.size() == n_records_per_task) {
          if (!flush_task()) {
            return;
          }
        }
      }

      for (uintptr_t current_task_id = 0; current_task_id < task_id;
           ++current_task_id) {
        std::unique_ptr<ProcessedTask> processed_task;
        {
          std::unique_lock<std::mutex> lock(mutex);
          cv.wait(lock, [&] {
            return ctx->rc != GRN_SUCCESS ||
                   processed_tasks.find(current_task_id) !=
                     processed_tasks.end();
          });
          if (ctx->rc == GRN_SUCCESS) {
            auto iter = processed_tasks.find(current_task_id);
            processed_task = std::move(iter->second);
            processed_tasks.erase(iter);
          }
        }
        if (ctx->rc != GRN_SUCCESS) {
          break;
        }
        if (!processed_task) {
          break;
        }
        for (size_t i = 0; i < processed_task->ids.size(); ++i) {
          auto id = processed_task->ids[i];
          auto embedding = &(processed_task->embeddings[i]);
          output(ctx, id, embedding);
        }
        if (progress_callback_) {
          progress.value.language_model_inferencer.n_processed_records =
            processed_task->ids.size();
          progress_callback_(ctx, &progress, progress_callback_user_data_);
        }
      }
      task_executor->wait_all();
#else
      ERR(GRN_FUNCTION_NOT_IMPLEMENTED, "%s llama.cpp isn't enabled", tag);
#endif
    }

  private:
#ifdef GRN_WITH_LLAMA_CPP
    std::shared_ptr<LanguageModel> model_;
    llama_model *llama_model_;
    enum llama_pooling_type default_pooling_type_;
    Vectorizer vectorizer_;
#endif
    std::string input_column_value_prefix_;
    grn_progress_callback_func progress_callback_;
    void *progress_callback_user_data_;
  };

  LanguageModelInferencer::LanguageModelInferencer(Impl *impl)
    : impl_(std::unique_ptr<Impl>(impl))
  {
  }

  LanguageModelInferencer::~LanguageModelInferencer() = default;

  void
  LanguageModelInferencer::set_input_column_value_prefix(std::string prefix)
  {
    impl_->set_input_column_value_prefix(std::move(prefix));
  }

  void
  LanguageModelInferencer::set_progress_callback(
    grn_progress_callback_func callback, void *user_data)
  {
    impl_->set_progress_callback(callback, user_data);
  }

  void
  LanguageModelInferencer::vectorize(grn_ctx *ctx,
                                     std::string_view text,
                                     grn_obj *output_vector)
  {
    return impl_->vectorize(ctx, text, output_vector);
  }

  void
  LanguageModelInferencer::vectorize_in_batch(grn_ctx *ctx,
                                              grn_table_cursor *cursor,
                                              grn_obj *input_column,
                                              grn_obj *output)
  {
    if (grn_obj_is_column(ctx, output)) {
      return impl_->vectorize_in_batch(
        ctx,
        cursor,
        input_column,
        [&](grn_ctx *ctx, grn_id id, grn_obj *embedding) {
          grn_obj_set_value(ctx, output, id, embedding, GRN_OBJ_SET);
        });
    } else {
      return impl_->vectorize_in_batch(
        ctx,
        cursor,
        input_column,
        [&](grn_ctx *ctx, grn_id id, grn_obj *embedding) {
          grn_bulk_write(ctx,
                         output,
                         GRN_BULK_HEAD(embedding),
                         GRN_BULK_VSIZE(embedding));
        });
    }
  }

  std::unique_ptr<LanguageModelInferencer>
  LanguageModel::make_inferencer(grn_ctx *ctx)
  {
#ifdef GRN_WITH_LLAMA_CPP
    return std::make_unique<LanguageModelInferencer>(
      new LanguageModelInferencer::Impl(shared_from_this(),
                                        impl_->get_raw(),
                                        impl_->default_pooling_type()));
#else
    ERR(GRN_FUNCTION_NOT_IMPLEMENTED,
        "[language-model][make-inferencer] llama.cpp isn't enabled");
    return nullptr;
#endif
  }

  uint32_t
  LanguageModel::get_n_embedding_dimensions(grn_ctx *ctx)
  {
#ifdef GRN_WITH_LLAMA_CPP
    return llama_model_n_embd(impl_->get_raw());
#else
    ERR(GRN_FUNCTION_NOT_IMPLEMENTED,
        "[language-model][get-n-embedding-dimensions] llama.cpp isn't enabled");
    return 0;
#endif
  }

  class LanguageModelDownloader {
  public:
    LanguageModelDownloader(grn_ctx *ctx,
                            std::string_view hf_repo,
                            std::string_view tag)
      : ctx_(ctx),
        hf_repo_(hf_repo),
        tag_(tag),
        client_(grn_http_client_open(ctx_)),
        db_path_(grn_obj_path(ctx, grn_ctx_db(ctx_))),
        manifest_path_(build_manifest_path()),
        endpoint_url_("https://huggingface.co/"),
        model_path_()
    {
      // We need to use "llama-cpp" as User-Agent to get "ggufFile"
      // information by manifest API.
      grn_http_client_set_user_agent(ctx_, client_, "llama-cpp");
      // We may need to set "Accept:" explicitly in the future.
      // grn_http_client_add_header(ctx_, client_, "Accept: application/json");
    }

    ~LanguageModelDownloader() { grn_http_client_close(ctx_, client_); }

    bool
    download()
    {
      auto ctx = ctx_;
#ifdef GRN_WITH_SIMDJSON
      if (!ensure_manifest()) {
        return false;
      }

      auto manifest_result = simdjson::padded_string::load(manifest_path_);
      if (manifest_result.error() != simdjson::SUCCESS) {
        // TODO: Convert simdjson::error_code to grn_rc
        ERR(GRN_UNKNOWN_ERROR,
            "%s can't read manifest: <%s>: <%s>: <%s>",
            TAG,
            hf_repo_.data(),
            tag_.data(),
            simdjson::error_message(manifest_result.error()));
        return false;
      }
      auto manifest = std::move(manifest_result.value());
      simdjson::ondemand::parser parser;
      auto doc = parser.iterate(manifest);
      auto model_file_name_result = doc["ggufFile"]["rfilename"].get_string();
      if (model_file_name_result.error() != simdjson::SUCCESS) {
        // TODO: add support multi modal projects ("mmprojFile.rfilename")
        ERR(GRN_INVALID_ARGUMENT,
            "%s GGUF file can't be detected: <%s>: <%s>: <%.*s>",
            TAG,
            hf_repo_.data(),
            tag_.data(),
            static_cast<int>(manifest.size()),
            manifest.data());
        return false;
      }
      auto model_file_name = model_file_name_result.value();

      return ensure_model(model_file_name);
#else
      ERR(GRN_FUNCTION_NOT_IMPLEMENTED, "%s simdjson isn't enabled", TAG);
      return false;
#endif
    }

    const std::string &
    model_path()
    {
      return model_path_;
    }

  private:
    static constexpr const char *TAG = "[language-model-downloader]";

    grn_ctx *ctx_;
    std::string_view hf_repo_;
    std::string_view tag_;
    grn_http_client *client_;
    std::string db_path_;
    std::string manifest_path_;
    std::string endpoint_url_;
    std::string model_path_;

    bool
    enable_cache()
    {
      return language_model::language_model_download_cache_dir[0] != '\0';
    }

    std::string
    build_base_path()
    {
      std::string safe_hf_repo = std::string(hf_repo_);
      std::replace(safe_hf_repo.begin(), safe_hf_repo.end(), '/', '_');
      return std::string("lm.") + safe_hf_repo + "_" + std::string(tag_);
    }

    std::string
    build_cache_path_prefix()
    {
      std::string cache_dir(language_model::language_model_download_cache_dir);
      if (cache_dir.back() == '/') {
        cache_dir.pop_back();
      }
      return cache_dir + "/" + build_base_path();
    }

    std::string
    build_path_prefix()
    {
      return db_path_ + "." + build_base_path();
    }

    std::string
    build_cache_manifest_path()
    {
      return build_cache_path_prefix() + ".manifest";
    }

    std::string
    build_manifest_path()
    {
      return build_path_prefix() + ".manifest";
    }

    std::string
    build_model_base_path(std::string_view model_file_name)
    {
      std::string safe_model_file_name = std::string(model_file_name);
      std::replace(safe_model_file_name.begin(),
                   safe_model_file_name.end(),
                   '/',
                   '_');
      return std::string("model.") + safe_model_file_name;
    }

    std::string
    build_cache_model_path(std::string_view model_file_name)
    {
      return build_cache_path_prefix() + "." +
             build_model_base_path(model_file_name);
    }

    std::string
    build_model_path(std::string_view model_file_name)
    {
      return build_path_prefix() + "." + build_model_base_path(model_file_name);
    }

    std::string
    build_manifest_url()
    {
      return endpoint_url_ + "v2/" + std::string(hf_repo_) + "/manifests/" +
             std::string(tag_);
    }

    std::string
    build_model_url(std::string_view model_file_name)
    {
      return endpoint_url_ + std::string(hf_repo_) + "/resolve/main/" +
             std::string(model_file_name);
    }

    bool
    ensure_manifest()
    {
      if (grn_path_exist(manifest_path_.data())) {
        return true;
      }

      std::string cache_manifest_path;
      if (enable_cache()) {
        cache_manifest_path = build_cache_manifest_path();
        if (grn_path_exist(cache_manifest_path.data()) &&
            grn_path_copy(ctx_,
                          cache_manifest_path.data(),
                          manifest_path_.data()) == GRN_SUCCESS) {
          return true;
        }
      }

      auto url = build_manifest_url();
      grn_http_client_set_url(ctx_, client_, url.data());
      if (grn_http_client_download(ctx_, client_) != GRN_SUCCESS) {
        return false;
      }
      auto manifest = grn_http_client_get_output(ctx_, client_);
      auto tmp_manifest_path = manifest_path_ + ".tmp";
      {
        std::ofstream tmp_manifest;
        tmp_manifest.open(tmp_manifest_path,
                          std::ios_base::binary | std::ios_base::trunc);
        if (!tmp_manifest) {
          auto ctx = ctx_;
          ERR(GRN_INVALID_ARGUMENT,
              "%s failed to save manifest: <%s>: <%s>: <%s>",
              TAG,
              url.data(),
              tmp_manifest_path.data(),
              std::strerror(errno));
          return false;
        }
        tmp_manifest.write(GRN_TEXT_VALUE(manifest), GRN_TEXT_LEN(manifest));
      }
      if (rename(tmp_manifest_path.data(), manifest_path_.data()) != 0) {
        auto ctx = ctx_;
        SERR("%s failed to rename downloaded manifest: <%s>: <%s> -> <%s>",
             TAG,
             url.data(),
             tmp_manifest_path.data(),
             manifest_path_.data());
        if (grn_path_exist(tmp_manifest_path.data())) {
          grn_unlink(tmp_manifest_path.data());
        }
        if (grn_path_exist(manifest_path_.data())) {
          grn_unlink(manifest_path_.data());
        }
        return false;
      }

      if (enable_cache()) {
        grn_path_copy(ctx_, manifest_path_.data(), cache_manifest_path.data());
      }

      return true;
    }

    bool
    ensure_model(std::string_view model_file_name)
    {
      model_path_ = build_model_path(model_file_name);
      if (grn_path_exist(model_path_.data())) {
        return true;
      }

      std::string cache_model_path;
      if (enable_cache()) {
        cache_model_path = build_cache_model_path(model_file_name);
        if (grn_path_exist(cache_model_path.data()) &&
            grn_path_copy(ctx_, cache_model_path.data(), model_path_.data()) ==
              GRN_SUCCESS) {
          return true;
        }
      }

      auto url = build_model_url(model_file_name);
      grn_http_client_set_url(ctx_, client_, url.data());
      auto tmp_model_path = model_path_ + ".tmp";
      grn_http_client_set_output_path(ctx_, client_, tmp_model_path.data());
      if (grn_http_client_download(ctx_, client_) != GRN_SUCCESS) {
        grn_io_remove_if_exist(ctx_, tmp_model_path.data());
        return false;
      }
      if (rename(tmp_model_path.data(), model_path_.data()) != 0) {
        auto ctx = ctx_;
        SERR("%s failed to rename downloaded manifest: <%s>: <%s> -> <%s>",
             TAG,
             url.data(),
             tmp_model_path.data(),
             manifest_path_.data());
        grn_io_remove_if_exist(ctx_, tmp_model_path.data());
        grn_io_remove_if_exist(ctx_, model_path_.data());
        return false;
      }

      if (enable_cache()) {
        grn_path_copy(ctx_, model_path_.data(), cache_model_path.data());
      }

      return true;
    }
  };
}; // namespace grn

extern "C" {
struct grn_language_model_ {
  std::shared_ptr<grn::LanguageModel> model;

  grn_language_model_() : model(nullptr) {}
  ~grn_language_model_() = default;
};

struct grn_language_model_inferencer_ {
  std::shared_ptr<grn::LanguageModelInferencer> inferencer;

  grn_language_model_inferencer_() : inferencer(nullptr) {}
  ~grn_language_model_inferencer_() = default;
};
struct grn_language_model_loader_ {
  grn::LanguageModelLoader loader;

  grn_language_model_loader_(grn_ctx *ctx) : loader(ctx) {}
  ~grn_language_model_loader_() = default;
};

grn_language_model_loader *
grn_language_model_loader_open(grn_ctx *ctx)
{
  grn::language_model::ensure_init_external_libraries();
  auto loader = new grn_language_model_loader_(ctx);
  return loader;
}

grn_rc
grn_language_model_loader_close(grn_ctx *ctx, grn_language_model_loader *loader)
{
  delete loader;
  return GRN_SUCCESS;
}

grn_rc
grn_language_model_loader_set_model(grn_ctx *ctx,
                                    grn_language_model_loader *loader,
                                    const char *model,
                                    int64_t model_length)
{
  GRN_API_ENTER;
  if (!loader) {
    ERR(GRN_INVALID_ARGUMENT,
        "[language-model-loader][set-model] loader must not be NULL");
    GRN_API_RETURN(ctx->rc);
  }
#ifdef GRN_WITH_LLAMA_CPP
  if (model_length < 0) {
    loader->loader.model_path = std::string(model, strlen(model));
  } else {
    loader->loader.model_path = std::string(model, model_length);
  }
  if (!loader->loader.model_path.empty()) {
    const std::string_view hf_url_prefix(
      "hf:///"); // TODO: Add support for custom endpoint
    // TODO: We can use starts_with() with C++20.
    if (loader->loader.model_path.substr(0, hf_url_prefix.size()) ==
        hf_url_prefix) {
      auto hf_repo = loader->loader.model_path.substr(hf_url_prefix.size());
      auto tag_separator_position = hf_repo.find("#");
      std::string_view tag("latest");
      if (tag_separator_position != std::string_view::npos) {
        auto specified_tag = hf_repo.substr(tag_separator_position + 1);
        if (!specified_tag.empty()) {
          tag = specified_tag;
        }
      }
      grn::LanguageModelDownloader downloader(ctx, hf_repo, tag);
      if (!downloader.download()) {
        GRN_API_RETURN(ctx->rc);
      }
      loader->loader.model_path = downloader.model_path();
    } else {
      if (loader->loader.model_path[0] != '/') {
        std::string model_path =
          grn::language_model::system_language_models_dir();
        model_path += "/" + loader->loader.model_path + ".gguf";
        loader->loader.model_path = std::move(model_path);
      }
    }
  }
#else
  ERR(GRN_FUNCTION_NOT_IMPLEMENTED,
      "[language-model-loader][set-model] llama.cpp isn't enabled");
#endif
  GRN_API_RETURN(ctx->rc);
}

grn_rc
grn_language_model_loader_set_n_gpu_layers(grn_ctx *ctx,
                                           grn_language_model_loader *loader,
                                           int32_t n_gpu_layers)
{
  const char *tag = "[language-model-loader][set-n-gpu-layers]";
  GRN_API_ENTER;
  if (!loader) {
    ERR(GRN_INVALID_ARGUMENT, "%s loader must not be NULL", tag);
    GRN_API_RETURN(ctx->rc);
  }
#ifdef GRN_WITH_LLAMA_CPP
  loader->loader.n_gpu_layers = n_gpu_layers;
#else
  ERR(GRN_FUNCTION_NOT_IMPLEMENTED, "%s llama.cpp isn't enabled", tag);
#endif
  GRN_API_RETURN(ctx->rc);
}

grn_language_model *
grn_language_model_loader_load(grn_ctx *ctx, grn_language_model_loader *loader)
{
  GRN_API_ENTER;
  if (!loader) {
    ERR(GRN_INVALID_ARGUMENT,
        "[language-model-loader][loader] loader must not be NULL");
    GRN_API_RETURN(NULL);
  }
  auto model = new grn_language_model();
  model->model = loader->loader.load();
  if (!model->model) {
    delete model;
    GRN_API_RETURN(NULL);
  }
  GRN_API_RETURN(model);
}

uint32_t
grn_language_model_get_n_embedding_dimensions(grn_ctx *ctx,
                                              grn_language_model *model)
{
  GRN_API_ENTER;
  uint32_t n_dimensions = model->model->get_n_embedding_dimensions(ctx);
  GRN_API_RETURN(n_dimensions);
}

grn_rc
grn_language_model_close(grn_ctx *ctx, grn_language_model *model)
{
  delete model;
  return GRN_SUCCESS;
}

grn_language_model_inferencer *
grn_language_model_open_inferencer(grn_ctx *ctx, grn_language_model *model)
{
  grn::language_model::ensure_init_external_libraries();

  GRN_API_ENTER;
  if (!model) {
    ERR(GRN_INVALID_ARGUMENT,
        "[language-model][open-inferencer] model must not be NULL");
    GRN_API_RETURN(NULL);
  }
  auto inferencer = new grn_language_model_inferencer_();
  inferencer->inferencer = model->model->make_inferencer(ctx);
  if (!inferencer->inferencer) {
    delete inferencer;
    GRN_API_RETURN(NULL);
  }
  GRN_API_RETURN(inferencer);
}

grn_rc
grn_language_model_inferencer_close(grn_ctx *ctx,
                                    grn_language_model_inferencer *inferencer)
{
  delete inferencer;
  return GRN_SUCCESS;
}

grn_rc
grn_language_model_inferencer_set_input_column_value_prefix(
  grn_ctx *ctx,
  grn_language_model_inferencer *inferencer,
  const char *prefix,
  int64_t prefix_length)
{
  GRN_API_ENTER;
  if (!inferencer) {
    ERR(GRN_INVALID_ARGUMENT,
        "[language-model-inferencer][input-column-value-prefix][set] "
        "inferencer must not be NULL");
    GRN_API_RETURN(ctx->rc);
  }
  if (prefix_length < 0) {
    inferencer->inferencer->set_input_column_value_prefix(prefix);
  } else {
    inferencer->inferencer->set_input_column_value_prefix(
      std::string(prefix, prefix_length));
  }
  GRN_API_RETURN(ctx->rc);
}

grn_rc
grn_language_model_inferencer_set_progress_callback(
  grn_ctx *ctx,
  grn_language_model_inferencer *inferencer,
  grn_progress_callback_func callback,
  void *user_data)
{
  GRN_API_ENTER;
  if (!inferencer) {
    ERR(GRN_INVALID_ARGUMENT,
        "[language-model-inferencer][progress-callback][set] "
        "inferencer must not be NULL");
    GRN_API_RETURN(ctx->rc);
  }
  inferencer->inferencer->set_progress_callback(callback, user_data);
  GRN_API_RETURN(ctx->rc);
}

grn_rc
grn_language_model_inferencer_vectorize(
  grn_ctx *ctx,
  grn_language_model_inferencer *inferencer,
  const char *text,
  int64_t text_length,
  grn_obj *output_vector)
{
  GRN_API_ENTER;
  if (!inferencer) {
    ERR(GRN_INVALID_ARGUMENT,
        "[language-model-inferencer][vectorize] inferencer must not be NULL");
    GRN_API_RETURN(ctx->rc);
  }
  if (!output_vector) {
    ERR(
      GRN_INVALID_ARGUMENT,
      "[language-model-inferencer][vectorize] output vector must not be NULL");
    GRN_API_RETURN(ctx->rc);
  }
  if (text_length < 0) {
    text_length = static_cast<int64_t>(strlen(text));
  }
  if (text_length > 0) {
    inferencer->inferencer->vectorize(ctx,
                                      std::string_view(text, text_length),
                                      output_vector);
  }
  GRN_API_RETURN(ctx->rc);
}

grn_rc
grn_language_model_inferencer_vectorize_applier(
  grn_ctx *ctx,
  grn_language_model_inferencer *inferencer,
  grn_obj *input_column,
  grn_applier_data *data)
{
  GRN_API_ENTER;
  if (!inferencer) {
    ERR(GRN_INVALID_ARGUMENT,
        "[language-model-inferencer][vectorize-applier] "
        "inferencer must not be NULL");
    GRN_API_RETURN(ctx->rc);
  }
  grn_obj *table = grn_applier_data_get_table(ctx, data);
  grn_obj *output_column = grn_applier_data_get_output_column(ctx, data);
  if (!(grn_obj_is_vector_column(ctx, output_column) &&
        DB_OBJ(output_column)->range == GRN_DB_FLOAT32)) {
    grn_obj inspected;
    GRN_TEXT_INIT(&inspected, 0);
    grn_inspect(ctx, &inspected, output_column);
    ERR(GRN_INVALID_ARGUMENT,
        "[language-model-inferencer][vectorize-applier] "
        "output column must be a Float32 vector column: %.*s",
        static_cast<int>(GRN_TEXT_LEN(&inspected)),
        GRN_TEXT_VALUE(&inspected));
    GRN_API_RETURN(ctx->rc);
  }
  auto cursor =
    grn_table_cursor_open(ctx, table, nullptr, 0, nullptr, 0, 0, -1, 0);
  if (cursor) {
    grn_language_model_inferencer_vectorize_in_batch(ctx,
                                                     inferencer,
                                                     cursor,
                                                     input_column,
                                                     output_column);
    grn_table_cursor_close(ctx, cursor);
  }
  GRN_API_RETURN(ctx->rc);
}

grn_rc
grn_language_model_inferencer_vectorize_in_batch(
  grn_ctx *ctx,
  grn_language_model_inferencer *inferencer,
  grn_table_cursor *cursor,
  grn_obj *input_column,
  grn_obj *output)
{
  GRN_API_ENTER;
  if (!inferencer) {
    ERR(GRN_INVALID_ARGUMENT,
        "[language-model-inferencer][vectorize-in-batch] "
        "inferencer must not be NULL");
    GRN_API_RETURN(ctx->rc);
  }
  inferencer->inferencer->vectorize_in_batch(ctx, cursor, input_column, output);
  GRN_API_RETURN(ctx->rc);
}
}