1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
/***********************************************/
/**
* @file legendreFunction.cpp
*
* @brief Associated Legendre functions.
* (fully normalized).
*
* @author Torsten Mayer-Guerr
* @author Annette Eicker
* @date 2001-05-31
*
*/
/***********************************************/
#include "base/importStd.h"
#include "base/matrix.h"
#include "legendreFunction.h"
/***** VARIABLES *******************************/
Matrix LegendreFunction::factor1;
Matrix LegendreFunction::factor2;
Matrix LegendreFunction::factor1Integral;
Matrix LegendreFunction::factor2Integral;
Vector LegendreFunction::factorSmall; //integration for small thetas
/***********************************************/
void LegendreFunction::computeFactors(UInt degree)
{
// Enough factors already computed?
if(factor1.rows()>degree)
return;
factor1 = Matrix(degree+1, Matrix::TRIANGULAR, Matrix::LOWER);
factor2 = Matrix(degree+1, Matrix::TRIANGULAR, Matrix::LOWER);
// factors for recursion P[n-1][n-1] -> P[n][n]
if(degree>0) factor1(1,1) = std::sqrt(3.0);
for(UInt n=2; n<=degree; n++)
factor1(n,n) = std::sqrt((2.*n+1)/(2.*n));
// factors for recursion P[m][n-1] and P[m][n-2] -> P[m][n]
for(UInt m=0; m<degree; m++)
for(UInt n=m+1; n<=degree; n++)
{
Double f = (2.*n+1)/((n+m)*(n-m));
factor1(n,m) = std::sqrt(f*(2.*n-1));
factor2(n,m) = -std::sqrt(f*(n-m-1.)*(n+m-1.)/(2.*n-3));
}
}
/***********************************************/
void LegendreFunction::computeFactorsIntegral(UInt degree)
{
// Enough factors already computed?
if(factor1Integral.rows()>degree)
return;
factor1Integral = Matrix(degree+1, Matrix::TRIANGULAR, Matrix::LOWER);
factor2Integral = Matrix(degree+1, Matrix::TRIANGULAR, Matrix::LOWER);
// factors for recursion P[n-1][n-2] and int_P[n-2][n-2] -> P[n][n]
for(UInt n=2; n<=degree; n++)
{
factor1Integral(n,n) = 1./(2.*n+2.)*std::sqrt((2.*n+1.)/(n*(n-1.)));
factor2Integral(n,n) = 1./(2.*n+2.)*std::sqrt(n*(2.*n+1.)*(2.*n-1.)/(n-1.));
}
// factors for recursion P[n-1][m] and int_P[n-2][m] -> P[n][m]
for(UInt m=0; m<degree; m++)
for(UInt n=m+1; n<=degree; n++)
{
factor1Integral(n,m) = -1.0/(n+1.)*std::sqrt((2.*n+1.)*(2.*n-1.)/((n-m)*(n+m)));
factor2Integral(n,m) = (n-2.)/(n+1.)*std::sqrt((2.*n+1.)*(n+m-1.)*(n-m-1.)/((2.*n-3.)*(n+m)*(n-m)));
}
// factors for Hmain diagonal for small thetas
factorSmall = Vector(degree+1);
for(UInt n=3; n<=degree; n++)
{
factorSmall(n)=1.0;
for(UInt k=5; k<=(2*n-1); k+=2)
factorSmall(n) *= k/(k+1.);
factorSmall(n) = std::sqrt(factorSmall(n)*(2*n+1));
}
}
/***********************************************/
const Matrix LegendreFunction::compute(Double t, UInt degree)
{
computeFactors(degree);
Matrix Fkt(degree+1, Matrix::TRIANGULAR, Matrix::LOWER);
Fkt(0,0) = 1e280; // dirty trick: to account for small numbers in very high degrees.
// recursion P[n-1][n-1] -> P[n][n] (main diagonals)
for(UInt n=1; n<=degree; n++)
Fkt(n,n) = factor1(n,n) *std::sqrt(1-t*t)* Fkt(n-1, n-1);
// recursion P[m][n-1] and P[m][n-2] -> P[m][n]
// secondary diagonal m=n-1
for(UInt n=1; n<=degree; n++)
Fkt(n,n-1) = factor1(n,n-1) * t * Fkt(n-1,n-1);
// all other functions
for(UInt m=0; m<(degree-1); m++)
for(UInt n=m+2; n<=degree; n++)
Fkt(n,m) = factor1(n,m)*t*Fkt(n-1,m) + factor2(n,m)*Fkt(n-2,m);
return 1e-280 * Fkt; // dirty trick: to account for small numbers in very high degrees.
}
/***********************************************/
const Matrix LegendreFunction::integral(Double t1, Double t2, UInt degree)
{
computeFactorsIntegral(degree);
Matrix intP(degree+1, Matrix::TRIANGULAR, Matrix::LOWER);
Double qt1 = t1*t1;
Double qt2 = t2*t2;
Double y1 = std::sqrt(1-qt1);
Double y2 = std::sqrt(1-qt2);
Double qy1 = 1-qt1;
Double qy2 = 1-qt2;
Double theta1 = acos(t1);
Double theta2 = acos(t2);
Matrix P1 = LegendreFunction::compute(t1, degree);
Matrix P2 = LegendreFunction::compute(t2, degree);
intP(0,0) = t2-t1;
intP(1,1) = std::sqrt(3.0)/2.0 * (t2*y2-theta2-t1*y1+theta1);
intP(2,2) = std::sqrt(5.0/12.0) * (3*t2-std::pow(t2, 3)-3*t1+std::pow(t1, 3));
// recursion P[n-1][n-2] and int_P[n-2][n-2] -> int_P[n][n]
// recursions are instable for small theta
if(theta1<=10.0*DEG2RAD && theta2<=10.0*DEG2RAD)
{
for(UInt n=3; n<=degree; n++)
{
Double x1 = 0.0;
Double x2 = 0.0;
Double fak = 1.0;
for(UInt k=0; k<=20; k++)
{
for(UInt i=1; i<=k; i++)
fak *= (2.*i-1.)/(2.*i);
x1 += fak*std::pow(y1, 2*k)/(n+2+2*k);
x2 += fak*std::pow(y2, 2*k)/(n+2+2*k);
}
intP(n,n) = -factorSmall(n)*(std::pow(y2, n+2)*x2 - std::pow(y1, n+2)*x1);
}
}
else // for large thetas
{
for(UInt n=3; n<=degree; n++)
intP(n,n) = factor1Integral(n,n) * (qy2*P2(n-1,n-2)-qy1*P1(n-1,n-2)) + factor2Integral(n,n) * intP(n-2,n-2);
}
// recursion P[n-1][m] and int_P[n-2][m] -> int_P[n][m]
for(UInt m=0; m<degree; m++)
{
intP(m+1,m) = factor1Integral(m+1,m) * (qy2*P2(m,m)-qy1*P1(m,m));
for(UInt n=m+2; n<=degree; n++)
intP(n,m) = factor1Integral(n,m) * (qy2*P2(n-1,m)-qy1*P1(n-1,m))
+ factor2Integral(n,m) * intP(n-2,m);
}
return intP;
}
/***********************************************/
|