1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
/***********************************************/
/**
* @file polynomial.cpp
*
* @brief Interpolation by polynomial.
*
* @author Torsten Mayer-Guerr
* @date 2017-05-27
*
*/
/***********************************************/
#include "base/importStd.h"
#include "base/polynomial.h"
/***********************************************/
void Polynomial::init(const std::vector<Time> ×, UInt degree, Bool throwException,
Bool leastSquares, Double range, Double extrapolation, Double margin)
{
try
{
this->times = times;
this->degree = degree;
this->throwException = throwException;
this->isLeastSquares = leastSquares;
this->sampling = medianSampling(times).seconds();
this->range = range * ((range < 0) ? -sampling : 1.);
this->extrapolation = extrapolation * ((extrapolation < 0) ? -sampling : 1.);
this->margin = margin;
if(times.size() < degree+1)
throw(Exception("Not enough data points ("+times.size()%"%i) to interpolate with polynomial degree "s+degree%"%i"s));
if(std::adjacent_find(times.begin(), times.end(), [margin](const Time &t1, const Time &t2){return (t2-t1).seconds() <= margin;}) != times.end())
throw(Exception("Input time series is unordered or contains duplicates"));
std::vector<Bool> isConstInterval(times.size()-1);
for(UInt i=0; i<isConstInterval.size(); i++)
isConstInterval.at(i) = (std::fabs((times.at(i+1)-times.at(i)).seconds()-sampling) < margin);
isPrecomputed.clear();
isPrecomputed.resize(times.size()-degree, TRUE);
if(degree > 0)
for(UInt i=0; i<isPrecomputed.size(); i++)
isPrecomputed.at(i) = !std::any_of(isConstInterval.begin()+i, isConstInterval.begin()+(i+degree), [](Bool b){return !b;});
// precomputed polynomial interpolation matrix
W = Matrix(degree+1, degree+1);
for(UInt i=0; i<W.rows(); i++)
{
W(0,i) = 1.0;
for(UInt n=1; n<W.columns(); n++)
W(n,i) = (i-degree/2.) * W(n-1,i);
}
inverse(W);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Matrix Polynomial::interpolate(const std::vector<Time> ×New, const_MatrixSliceRef A, UInt rowsPerEpoch, UInt derivative, Bool adjoint) const
{
try
{
if(!derivative && !isLeastSquares && (timesNew == times)) // need interpolation?
return A;
Matrix B(rowsPerEpoch*(adjoint ? times.size() : timesNew.size()), A.columns());
auto searchStart = times.begin();
for(UInt i=0; i<timesNew.size(); i++)
{
// find interval
// -------------
UInt idx = NULLINDEX;
UInt count = degree+1;
if(!isLeastSquares)
{
searchStart = std::lower_bound(searchStart, times.end(), timesNew.at(i)); // first epoch greater or equal than interpolation point
const UInt idxFirstRight = static_cast<UInt>(std::distance(times.begin(), searchStart));
// same time? -> no interpolation needed
if(!adjoint && !derivative && (idxFirstRight < times.size()) && (std::fabs((*searchStart-timesNew.at(i)).seconds()) <= margin))
{
copy(A.row(rowsPerEpoch*idxFirstRight, rowsPerEpoch), B.row(rowsPerEpoch*i, rowsPerEpoch));
continue;
}
// interpolation possible?
UInt optimalCentricity = MAX_UINT; // primary metric (number of points left and right)
Double optimalDistance = 1e99; // secondary metric
for(UInt k=std::max(idxFirstRight, count)-count; k<=std::min(idxFirstRight, times.size()-count); k++)
{
const Double dt1 = (times.at(k)-timesNew.at(i)).seconds();
const Double dt2 = (times.at(k+degree)-timesNew.at(i)).seconds();
if((dt2-dt1 <= range) && (dt2 >= -extrapolation) && (dt1 <= extrapolation))
{
const UInt centricity = std::max(idxFirstRight-k, k+count-idxFirstRight); // max(number of points left and right)
if(centricity > optimalCentricity)
break; // there won't be any better polynomial to the right of the current optimal anymore if centricity is increasing
if((centricity < optimalCentricity) || (std::max(std::fabs(dt1), std::fabs(dt2)) < optimalDistance))
{
idx = k;
optimalCentricity = centricity;
optimalDistance = std::max(std::fabs(dt1), std::fabs(dt2));
}
}
}
}
else // least squares
{
auto searchEnd = std::upper_bound(searchStart, times.end(), timesNew.at(i)+seconds2time(range)); // first epoch outside search interval
searchStart = std::lower_bound(searchStart, searchEnd, timesNew.at(i)-seconds2time(range)); // first epoch greater or equal than search interval
idx = std::distance(times.begin(), searchStart);
count = static_cast<UInt>(std::distance(searchStart, searchEnd));
if((count < degree+1) || ((times.at(idx) - timesNew.at(i)).seconds() > extrapolation) || // all points are after newTime and we are too far away
((timesNew.at(i) - times.at(idx+count-1)).seconds() > extrapolation)) // all points are before newTime and we are too far away
idx = NULLINDEX;
}
// check if we are allowed to predict
// ----------------------------------
if(idx == NULLINDEX)
{
if(throwException || adjoint)
throw(Exception("cannot interpolate at "+timesNew.at(i).dateTimeStr()));
B.row(i*rowsPerEpoch, rowsPerEpoch).fill(NAN_EXPR);
continue;
}
// compute interpolation coefficients
// ----------------------------------
Vector coeff;
if(!isLeastSquares && isPrecomputed.at(idx))
{
const Double tau = (timesNew.at(i)-times.at(idx)).seconds()/sampling - degree/2.;
coeff = Vector(W.rows());
Double t = 1.0;
for(UInt n=derivative; n<=degree; n++)
{
Double d = 1.0;
for(UInt k=0; k<derivative; k++)
d *= (n-k)/sampling;
axpy(d*t, W.column(n), coeff);
t *= tau;
}
}
else
{
// polynomial matrix
Matrix P(count, degree+1, Matrix::NOFILL);
for(UInt k=0; k<count; k++)
{
const Double factor = (timesNew.at(i)-times.at(idx+k)).seconds()/sampling;
P(k,0) = 1.0;
for(UInt n=1; n<=degree; n++)
P(k,n) = factor * P(k,n-1);
}
coeff = Vector(count);
coeff(derivative) = 1.;
for(UInt n=1; n<=derivative; n++)
coeff(derivative) *= n/sampling;
if(P.rows() > P.columns()) // solve with QR-decomposition
{
const Vector tau = QR_decomposition(P);
triangularSolve(1., P.row(0, P.columns()).trans(), coeff.row(0, P.columns())); // R^(-T)*coeff
QMult(P, tau, coeff); // coeff := Q*R^(-T)*coeff
}
else
{
solveInPlace(Matrix(P.trans()), coeff);
}
}
// interpolate
// -----------
if(!adjoint)
{
if(rowsPerEpoch == 1)
matMult(1., coeff.trans(), A.row(idx, coeff.rows()), B.row(i, rowsPerEpoch));
else
for(UInt k=0; k<coeff.rows(); k++)
axpy(coeff(k), A.row(rowsPerEpoch*(idx+k), rowsPerEpoch), B.row(rowsPerEpoch*i, rowsPerEpoch));
}
else
{
if(rowsPerEpoch == 1)
matMult(1., coeff, A.row(i, rowsPerEpoch), B.row(idx, coeff.rows()));
else
for(UInt k=0; k<coeff.rows(); k++)
axpy(coeff(k), A.row(rowsPerEpoch*i, rowsPerEpoch), B.row(rowsPerEpoch*(idx+k), rowsPerEpoch));
}
}
return B;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|