1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
/***********************************************/
/**
* @file transform3d.cpp
*
* @brief Orthogonal coordinate transformations in 3d space.
* (rotations and reflections).
*
* @author Torsten Mayer-Guerr
* @date 2019-03-03
*
*/
/***********************************************/
#include "base/importStd.h"
#include "base/ellipsoid.h"
#include "base/vector3d.h"
#include "base/tensor3d.h"
#include "base/rotary3d.h"
#include "base/transform3d.h"
/***********************************************/
/// Contructor from Rotary3d.
Transform3d::Transform3d(const Rotary3d &rot) : field(rot.field) {}
/***********************************************/
// rotary from 3x3 matrix
Transform3d::Transform3d(const_MatrixSliceRef A)
{
try
{
field[0][0] = A(0,0);
field[0][1] = A(0,1);
field[0][2] = A(0,2);
field[1][0] = A(1,0);
field[1][1] = A(1,1);
field[1][2] = A(1,2);
field[2][0] = A(2,0);
field[2][1] = A(2,1);
field[2][2] = A(2,2);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Transform3d::Transform3d(Vector3d x, Vector3d y)
{
// Orthonormalize
x.normalize();
Vector3d z = normalize(crossProduct(x,y));
y = crossProduct(z,x);
field[0][0] = x.x(); field[0][1] = y.x(); field[0][2] = z.x();
field[1][0] = x.y(); field[1][1] = y.y(); field[1][2] = z.y();
field[2][0] = x.z(); field[2][1] = y.z(); field[2][2] = z.z();
}
/***********************************************/
Vector3d Transform3d::transform(const Vector3d &v) const
{
Vector3d y;
for(UInt i=0; i<3; i++)
for(UInt k=0; k<3; k++)
y.field[i] += field[i][k] * v.field[k];
return y;
}
/***********************************************/
Vector3d Transform3d::inverseTransform(const Vector3d &v) const
{
Vector3d y;
for(UInt i=0; i<3; i++)
for(UInt k=0; k<3; k++)
y.field[i] += field[k][i] * v.field[k];
return y;
}
/***********************************************/
Tensor3d Transform3d::transform(const Tensor3d &t) const
{
auto rot = [&](UInt i, UInt k)
{
return field[i][0]*field[k][0] * t.xx()
+ field[i][1]*field[k][1] * t.yy()
+ field[i][2]*field[k][2] * t.zz()
+ (field[i][0]*field[k][1] + field[i][1]*field[k][0]) * t.xy()
+ (field[i][0]*field[k][2] + field[i][2]*field[k][0]) * t.xz()
+ (field[i][1]*field[k][2] + field[i][2]*field[k][1]) * t.yz();
};
Tensor3d t2;
t2.xx() = rot(0, 0);
t2.yy() = rot(1, 1);
t2.zz() = rot(2, 2);
t2.xy() = rot(0, 1);
t2.xz() = rot(0, 2);
t2.yz() = rot(1, 2);
return t2;
}
/***********************************************/
Tensor3d Transform3d::inverseTransform(const Tensor3d &t) const
{
auto rot = [&](UInt i, UInt k)
{
return field[0][i]*field[0][k] * t.xx()
+ field[1][i]*field[1][k] * t.yy()
+ field[2][i]*field[2][k] * t.zz()
+ (field[0][i]*field[1][k] + field[1][i]*field[0][k]) * t.xy()
+ (field[0][i]*field[2][k] + field[2][i]*field[0][k]) * t.xz()
+ (field[1][i]*field[2][k] + field[2][i]*field[1][k]) * t.yz();
};
Tensor3d t2;
t2.xx() = rot(0, 0);
t2.yy() = rot(1, 1);
t2.zz() = rot(2, 2);
t2.xy() = rot(0, 1);
t2.xz() = rot(0, 2);
t2.yz() = rot(1, 2);
return t2;
}
/***********************************************/
Transform3d &Transform3d::operator*= (const Transform3d &b)
{
*this = *this * b;
return *this;
}
/***********************************************/
Transform3d &Transform3d::operator*= (const Rotary3d &b)
{
*this = *this * b;
return *this;
}
/***********************************************/
Transform3d Transform3d::operator* (const Transform3d &b) const
{
Transform3d y;
for(UInt i=0; i<3; i++)
for(UInt k=0; k<3; k++)
{
y.field[i][k] = 0.0;
for(UInt l=0; l<3; l++)
y.field[i][k] += field[i][l] * b.field[l][k];
}
return y;
}
/***********************************************/
Transform3d Transform3d::operator* (const Rotary3d &b) const
{
Transform3d y;
for(UInt i=0; i<3; i++)
for(UInt k=0; k<3; k++)
{
y.field[i][k] = 0.0;
for(UInt l=0; l<3; l++)
y.field[i][k] += field[i][l] * b.field[l][k];
}
return y;
}
/***********************************************/
/***********************************************/
Transform3d inverse(const Transform3d &b)
{
Transform3d rot;
for(UInt i=0; i<3; i++)
for(UInt k=0; k<3; k++)
rot.field[i][k] = b.field[k][i];
return rot;
}
/***********************************************/
Transform3d localNorthEastUp(const Vector3d &point)
{
const Vector3d z = normalize(point); // up
const Vector3d y = normalize(crossProduct(Vector3d(0,0,1), z)); // east
const Vector3d x = normalize(crossProduct(z, y)); // north
Transform3d T;
T.field[0][0] = x.x(); T.field[0][1] = y.x(); T.field[0][2] = z.x();
T.field[1][0] = x.y(); T.field[1][1] = y.y(); T.field[1][2] = z.y();
T.field[2][0] = x.z(); T.field[2][1] = y.z(); T.field[2][2] = z.z();
return T;
}
/***********************************************/
Transform3d localNorthEastUp(const Vector3d &point, const Ellipsoid &ellipsoid)
{
Angle L, B;
Double h;
ellipsoid(point, L, B, h);
return localNorthEastUp(polar(L, B, 1.));
}
/***********************************************/
|