File: vector3d.h

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (150 lines) | stat: -rw-r--r-- 6,242 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/***********************************************/
/**
* @file vector3d.h
*
* @brief Vector in 3d space.
*
* @author Torsten Mayer-Guerr
* @date 2001-05-31
*
*/
/***********************************************/

#ifndef __GROOPS_VECTOR3D__
#define __GROOPS_VECTOR3D__

#include "base/importStd.h"
#include "base/angle.h"
#include "base/matrix.h"

/**
* @defgroup vector3dGroup Vector3d
* @brief Coordinates in 3d space.
* @ingroup base */
/// @{

/***** CLASS ***********************************/

/** @brief Vector in 3d space.
* For the representation of e.g. positions, velocities, gravity.
* Can be rotated with @a Rotary3d.
* Can added, subtracted and multiplied with a Double.
* (Internally represented by cartesian coordinates). */
class Vector3d
{
  std::array<Double,3> field;

public:
  Vector3d() : field{0.,0.,0.} {} //!< Default constructor (Zero vector).

  Vector3d(Double x, Double y, Double z) : field{x,y,z} {} //!< Constructor from cartesian coordinates.
  explicit Vector3d(const_MatrixSliceRef x);               //!< Constructor from 3x1 or 1x3 matrix slice

  Double  x() const {return field[0];} //!< Cartesian coordinates: x component.
  Double  y() const {return field[1];} //!< Cartesian coordinates: y component.
  Double  z() const {return field[2];} //!< Cartesian coordinates: z component.
  Double &x()       {return field[0];} //!< Cartesian coordinates: x component.
  Double &y()       {return field[1];} //!< Cartesian coordinates: y component.
  Double &z()       {return field[2];} //!< Cartesian coordinates: z component.

  /** @brief Polar coordinates: longitude (-PI,PI].
  * @f[ \lambda = \arctan2(y,x) @f] */
  Angle lambda()  const;

  /** @brief Polar coordinates: latitude [-PI,PI].
  * @f[ \varphi = \arctan2(z,\sqrt{x^2+y^2}) @f] */
  Angle phi() const;

  /** @brief Polar coordinates: zenit angle [-PI,PI].
  * @f[ \vartheta = \pi/2 - \varphi @f]
  * @see Vector3d::phi */
  Angle theta() const;

  /** @brief Polar coordinates: radius.
  * @f[ r = \sqrt{x^2+y^2+z^2} @f] */
  Double r() const;

  /** @brief Quadratic sum.
  * @f[ x^2+y^2+z^2 @f] */
  Double quadsum() const;

  /** @brief L2-Norm.
  * @f[ \sqrt{x^2+y^2+z^2} @f]*/
  Double norm() const;

  /** @brief Normalize the vector.
  * @f[ \frac{1}{\sqrt{x^2+y^2+z^2}} \cdot (x,y,z)^T @f]
  * @return old length */
  Double normalize();

  /// Cast to Vector.
  Vector vector() const;

  Vector3d &operator+= (Vector3d const &b);
  Vector3d &operator-= (Vector3d const &b);
  Vector3d &operator*= (Double  c);
  Vector3d &operator/= (Double  c);

  friend class Rotary3d;
  friend class Transform3d;
  friend Double inner(const Vector3d &x, const Vector3d &y);
  friend Vector3d polar(Angle lambda, Angle phi, Double r);
  friend Vector3d crossProduct(const Vector3d &x, const Vector3d &y);
};

/***** FUNCTIONS *******************************/

/** @brief Inner Product.
* @f[ c = x^Ty @f] */
inline Double inner(const Vector3d &x, const Vector3d &y);

/** @brief Vector3d from polar coordinates. */
inline Vector3d polar(Angle lambda, Angle phi, Double r);

/** @brief Cross product.
* @f[ z = x \times y @f] */
inline Vector3d crossProduct(const Vector3d &x, const Vector3d &y);

/** @brief Scale vector to unit length. */
inline Vector3d normalize(const Vector3d &x);

inline const Vector3d operator- (const Vector3d &t)                      {return Vector3d(t)  *= -1;}
inline const Vector3d operator+ (const Vector3d &t1, const Vector3d &t2) {return Vector3d(t1) += t2;}
inline const Vector3d operator- (const Vector3d &t1, const Vector3d &t2) {return Vector3d(t1) -= t2;}
inline const Vector3d operator* (Double c, const Vector3d &t)            {return Vector3d(t)  *=c;}
inline const Vector3d operator* (const Vector3d &t, Double c)            {return Vector3d(t)  *=c;}
inline const Vector3d operator/ (const Vector3d &t, Double c)            {return Vector3d(t)  /=c;}

/// @}

/***********************************************/
/***** INLINES *********************************/
/***********************************************/

inline Vector3d::Vector3d(const_MatrixSliceRef x) {if(x.size()!=3) throw(Exception("Vector3d constructor dimension error")); for(UInt i=0; i<3; i++) field[i]=(x.rows()>1 ? x(i,0) : x(0,i));}

inline Vector3d &Vector3d::operator+= (Vector3d const &b)  {for(UInt i=0; i<3; i++) field[i]+=b.field[i]; return *this;}
inline Vector3d &Vector3d::operator-= (Vector3d const &b)  {for(UInt i=0; i<3; i++) field[i]-=b.field[i]; return *this;}
inline Vector3d &Vector3d::operator*= (Double  c)          {for(UInt i=0; i<3; i++) field[i]*=c; return *this;}
inline Vector3d &Vector3d::operator/= (Double  c)          {for(UInt i=0; i<3; i++) field[i]/=c; return *this;}

inline Double Vector3d::quadsum()const {return field[0]*field[0]+field[1]*field[1]+field[2]*field[2];}
inline Angle  Vector3d::lambda() const {return Angle(atan2(field[1],field[0]));}
inline Angle  Vector3d::phi()    const {return Angle(atan2(field[2],sqrt(field[0]*field[0]+field[1]*field[1])));}
inline Angle  Vector3d::theta()  const {return Angle(PI/2-atan2(field[2],sqrt(field[0]*field[0]+field[1]*field[1])));}
inline Double Vector3d::r()      const {return norm();}
inline Double Vector3d::norm()   const {return sqrt(quadsum());}
inline Double Vector3d::normalize()    {Double n=norm(); *this*=(1/n); return n;}
inline Vector Vector3d::vector() const {Vector r(3); r(0)=x(); r(1)=y(); r(2)=z(); return r;}

inline Double   inner(const Vector3d &a, const Vector3d &b)        {return a.field[0]*b.field[0]+a.field[1]*b.field[1]+a.field[2]*b.field[2];}
inline Vector3d crossProduct(const Vector3d &a, const Vector3d &b) {return Vector3d(a.field[1]*b.field[2]-a.field[2]*b.field[1],
                                                                                    a.field[2]*b.field[0]-a.field[0]*b.field[2],
                                                                                    a.field[0]*b.field[1]-a.field[1]*b.field[0]);}
inline Vector3d polar(Angle lambda, Angle phi, Double r) {return Vector3d(r*cos(lambda)*cos(phi), r*sin(lambda)*cos(phi), r*sin(phi));}
inline Vector3d normalize(const Vector3d &x) {return x/x.norm();}


/***********************************************/

#endif /* __GROOPS_VECTOR3D__ */