1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
/***********************************************/
/**
* @file vector3d.h
*
* @brief Vector in 3d space.
*
* @author Torsten Mayer-Guerr
* @date 2001-05-31
*
*/
/***********************************************/
#ifndef __GROOPS_VECTOR3D__
#define __GROOPS_VECTOR3D__
#include "base/importStd.h"
#include "base/angle.h"
#include "base/matrix.h"
/**
* @defgroup vector3dGroup Vector3d
* @brief Coordinates in 3d space.
* @ingroup base */
/// @{
/***** CLASS ***********************************/
/** @brief Vector in 3d space.
* For the representation of e.g. positions, velocities, gravity.
* Can be rotated with @a Rotary3d.
* Can added, subtracted and multiplied with a Double.
* (Internally represented by cartesian coordinates). */
class Vector3d
{
std::array<Double,3> field;
public:
Vector3d() : field{0.,0.,0.} {} //!< Default constructor (Zero vector).
Vector3d(Double x, Double y, Double z) : field{x,y,z} {} //!< Constructor from cartesian coordinates.
explicit Vector3d(const_MatrixSliceRef x); //!< Constructor from 3x1 or 1x3 matrix slice
Double x() const {return field[0];} //!< Cartesian coordinates: x component.
Double y() const {return field[1];} //!< Cartesian coordinates: y component.
Double z() const {return field[2];} //!< Cartesian coordinates: z component.
Double &x() {return field[0];} //!< Cartesian coordinates: x component.
Double &y() {return field[1];} //!< Cartesian coordinates: y component.
Double &z() {return field[2];} //!< Cartesian coordinates: z component.
/** @brief Polar coordinates: longitude (-PI,PI].
* @f[ \lambda = \arctan2(y,x) @f] */
Angle lambda() const;
/** @brief Polar coordinates: latitude [-PI,PI].
* @f[ \varphi = \arctan2(z,\sqrt{x^2+y^2}) @f] */
Angle phi() const;
/** @brief Polar coordinates: zenit angle [-PI,PI].
* @f[ \vartheta = \pi/2 - \varphi @f]
* @see Vector3d::phi */
Angle theta() const;
/** @brief Polar coordinates: radius.
* @f[ r = \sqrt{x^2+y^2+z^2} @f] */
Double r() const;
/** @brief Quadratic sum.
* @f[ x^2+y^2+z^2 @f] */
Double quadsum() const;
/** @brief L2-Norm.
* @f[ \sqrt{x^2+y^2+z^2} @f]*/
Double norm() const;
/** @brief Normalize the vector.
* @f[ \frac{1}{\sqrt{x^2+y^2+z^2}} \cdot (x,y,z)^T @f]
* @return old length */
Double normalize();
/// Cast to Vector.
Vector vector() const;
Vector3d &operator+= (Vector3d const &b);
Vector3d &operator-= (Vector3d const &b);
Vector3d &operator*= (Double c);
Vector3d &operator/= (Double c);
friend class Rotary3d;
friend class Transform3d;
friend Double inner(const Vector3d &x, const Vector3d &y);
friend Vector3d polar(Angle lambda, Angle phi, Double r);
friend Vector3d crossProduct(const Vector3d &x, const Vector3d &y);
};
/***** FUNCTIONS *******************************/
/** @brief Inner Product.
* @f[ c = x^Ty @f] */
inline Double inner(const Vector3d &x, const Vector3d &y);
/** @brief Vector3d from polar coordinates. */
inline Vector3d polar(Angle lambda, Angle phi, Double r);
/** @brief Cross product.
* @f[ z = x \times y @f] */
inline Vector3d crossProduct(const Vector3d &x, const Vector3d &y);
/** @brief Scale vector to unit length. */
inline Vector3d normalize(const Vector3d &x);
inline const Vector3d operator- (const Vector3d &t) {return Vector3d(t) *= -1;}
inline const Vector3d operator+ (const Vector3d &t1, const Vector3d &t2) {return Vector3d(t1) += t2;}
inline const Vector3d operator- (const Vector3d &t1, const Vector3d &t2) {return Vector3d(t1) -= t2;}
inline const Vector3d operator* (Double c, const Vector3d &t) {return Vector3d(t) *=c;}
inline const Vector3d operator* (const Vector3d &t, Double c) {return Vector3d(t) *=c;}
inline const Vector3d operator/ (const Vector3d &t, Double c) {return Vector3d(t) /=c;}
/// @}
/***********************************************/
/***** INLINES *********************************/
/***********************************************/
inline Vector3d::Vector3d(const_MatrixSliceRef x) {if(x.size()!=3) throw(Exception("Vector3d constructor dimension error")); for(UInt i=0; i<3; i++) field[i]=(x.rows()>1 ? x(i,0) : x(0,i));}
inline Vector3d &Vector3d::operator+= (Vector3d const &b) {for(UInt i=0; i<3; i++) field[i]+=b.field[i]; return *this;}
inline Vector3d &Vector3d::operator-= (Vector3d const &b) {for(UInt i=0; i<3; i++) field[i]-=b.field[i]; return *this;}
inline Vector3d &Vector3d::operator*= (Double c) {for(UInt i=0; i<3; i++) field[i]*=c; return *this;}
inline Vector3d &Vector3d::operator/= (Double c) {for(UInt i=0; i<3; i++) field[i]/=c; return *this;}
inline Double Vector3d::quadsum()const {return field[0]*field[0]+field[1]*field[1]+field[2]*field[2];}
inline Angle Vector3d::lambda() const {return Angle(atan2(field[1],field[0]));}
inline Angle Vector3d::phi() const {return Angle(atan2(field[2],sqrt(field[0]*field[0]+field[1]*field[1])));}
inline Angle Vector3d::theta() const {return Angle(PI/2-atan2(field[2],sqrt(field[0]*field[0]+field[1]*field[1])));}
inline Double Vector3d::r() const {return norm();}
inline Double Vector3d::norm() const {return sqrt(quadsum());}
inline Double Vector3d::normalize() {Double n=norm(); *this*=(1/n); return n;}
inline Vector Vector3d::vector() const {Vector r(3); r(0)=x(); r(1)=y(); r(2)=z(); return r;}
inline Double inner(const Vector3d &a, const Vector3d &b) {return a.field[0]*b.field[0]+a.field[1]*b.field[1]+a.field[2]*b.field[2];}
inline Vector3d crossProduct(const Vector3d &a, const Vector3d &b) {return Vector3d(a.field[1]*b.field[2]-a.field[2]*b.field[1],
a.field[2]*b.field[0]-a.field[0]*b.field[2],
a.field[0]*b.field[1]-a.field[1]*b.field[0]);}
inline Vector3d polar(Angle lambda, Angle phi, Double r) {return Vector3d(r*cos(lambda)*cos(phi), r*sin(lambda)*cos(phi), r*sin(phi));}
inline Vector3d normalize(const Vector3d &x) {return x/x.norm();}
/***********************************************/
#endif /* __GROOPS_VECTOR3D__ */
|