File: digitalFilter.cpp

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (395 lines) | stat: -rw-r--r-- 13,594 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
/***********************************************/
/**
* @file digitalFilter.cpp
*
* @brief Digital filter implementation.
*
* @author Matthias Ellmer
* @author Andreas Kvas
* @date 2015-10-29
*
*/
/***********************************************/

#define DOCSTRING_DigitalFilter

#include "base/import.h"
#include "base/fourier.h"
#include "config/configRegister.h"
#include "inputOutput/logging.h"
#include "classes/digitalFilter/digitalFilterMovingAverage.h"
#include "classes/digitalFilter/digitalFilterMedian.h"
#include "classes/digitalFilter/digitalFilterDerivative.h"
#include "classes/digitalFilter/digitalFilterIntegral.h"
#include "classes/digitalFilter/digitalFilterGraceLowpass.h"
#include "classes/digitalFilter/digitalFilterButterworth.h"
#include "classes/digitalFilter/digitalFilterFile.h"
#include "classes/digitalFilter/digitalFilterCorrelation.h"
#include "classes/digitalFilter/digitalFilterWavelet.h"
#include "classes/digitalFilter/digitalFilterNotch.h"
#include "classes/digitalFilter/digitalFilterDecorrelation.h"
#include "classes/digitalFilter/digitalFilterLag.h"
#include "classes/digitalFilter/digitalFilterReduceFilterOutput.h"
#include "classes/digitalFilter/digitalFilter.h"

/***********************************************/

GROOPS_REGISTER_CLASS(DigitalFilter, "digitalFilterType",
                      DigitalFilterMovingAverage,
                      DigitalFilterMedian,
                      DigitalFilterDerivative,
                      DigitalFilterIntegral,
                      DigitalFilterCorrelation,
                      DigitalFilterGraceLowpass,
                      DigitalFilterButterworth,
                      DigitalFilterFile,
                      DigitalFilterWavelet,
                      DigitalFilterNotch,
                      DigitalFilterDecorrelation,
                      DigitalFilterLag,
                      DigitalFilterReduceFilterOutput)

GROOPS_READCONFIG_UNBOUNDED_CLASS(DigitalFilter, "digitalFilterType")

/***********************************************/

DigitalFilter::DigitalFilter(Config &config, const std::string &name)
{
  try
  {
    std::string type;
    while(readConfigChoice(config, name, type, Config::OPTIONAL, "", "create digital filter"))
    {
      if(readConfigChoiceElement(config, "movingAverage", type, "moving average (boxcar) filter"))
        filters.push_back(new DigitalFilterMovingAverage(config));
      if(readConfigChoiceElement(config, "movingMedian",  type, "moving median filter"))
        filters.push_back(new DigitalFilterMedian(config));
      if(readConfigChoiceElement(config, "derivative",    type, "differentiation by polynomial approximation"))
        filters.push_back(new DigitalFilterDerivative(config));
      if(readConfigChoiceElement(config, "integral",      type, "integration by polynomial approximation"))
        filters.push_back(new DigitalFilterIntegral(config));
      if(readConfigChoiceElement(config, "correlation",   type, "correlation by simple coefficient"))
        filters.push_back(new DigitalFilterCorrelation(config));
      if(readConfigChoiceElement(config, "graceLowpass",  type, "GRACE low pass filter (self convolving kernel)"))
        filters.push_back(new DigitalFilterGraceLowpass(config));
      if(readConfigChoiceElement(config, "butterworth",   type, "fixed order digital Butterworth filter"))
        filters.push_back(new DigitalFilterButterworth(config));
      if(readConfigChoiceElement(config, "file",          type, "read ARMA filter from file"))
        filters.push_back(new DigitalFilterFile(config));
      if(readConfigChoiceElement(config, "wavelet",       type, "filter representation of wavelet"))
        filters.push_back(new DigitalFilterWavelet(config));
      if(readConfigChoiceElement(config, "notch",         type, "notch filter"))
        filters.push_back(new DigitalFilterNotch(config));
      if(readConfigChoiceElement(config, "decorrelation",         type, "decorrelation filter"))
        filters.push_back(new DigitalFilterDecorrelation(config));
      if(readConfigChoiceElement(config, "lag",           type, "lag/lead filter"))
        filters.push_back(new DigitalFilterLag(config));
      if(readConfigChoiceElement(config, "reduceFilterOutput",  type, "remove filter output from input signal"))
        filters.push_back(new DigitalFilterReduceFilterOutput(config));
      endChoice(config);
      if(isCreateSchema(config))
        return;
    }
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

DigitalFilter::~DigitalFilter()
{
  for(UInt i=0; i<filters.size(); i++)
    delete filters.at(i);
}

/***********************************************/

Matrix DigitalFilter::filter(const_MatrixSliceRef input) const
{
  try
  {
    Matrix output = input;
    for(UInt i=0; i<filters.size(); i++)
      output = filters.at(i)->filter(output);
    return output;
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

std::vector<std::complex<Double>> DigitalFilter::frequencyResponse(UInt length) const
{
  try
  {
    std::vector<std::complex<Double>> F((length+2)/2, 1.);
    for(UInt i=0; i<filters.size(); i++)
    {
      auto H = filters.at(i)->frequencyResponse(length);
      for(UInt k=0; k<H.size(); k++)
        F.at(k) *= H.at(k);
    }
    return F;
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/
/***********************************************/

Matrix DigitalFilterARMA::filter(const_MatrixSliceRef input) const
{
  try
  {
    // check input
    // -----------
    if(input.rows()<warmup())
      throw(Exception("Time series is too short (<"+input.rows()%"%i"s+"> elements) to apply a filter with a warmup length of <"+warmup()%"%i"s+">."));

    // filter in frequency domain
    // --------------------------
    if(inFrequencyDomain)
    {
      Matrix padded = pad(input, warmup(), bnStartIndex, padType);
      auto H = frequencyResponse(padded.rows());
      for(UInt k=0; k<padded.columns(); k++) // Filter column-wise
      {
        auto F = Fourier::fft(padded.column(k));
        for(UInt i=0; i<F.size(); i++)
          F.at(i) *= H.at(i);
        copy(Fourier::synthesis(F, (padded.rows()%2==0)), padded.column(k));
      }
      return trim(padded, warmup(), bnStartIndex, padType);
    }

    // filter in time domain
    // ---------------------
    Matrix padded = pad(input, warmup(), bnStartIndex, padType);
    if(backward)
    {
      for(UInt k = 0; k < padded.rows()/2; k++)
        swap(padded.row(k), padded.row(padded.rows() - k - 1));
    }
    Matrix output(padded.rows(), padded.columns());

    const UInt blockSize = std::min(static_cast<UInt>(64), padded.rows());

    Matrix B(bn.rows() + blockSize - 1, blockSize);
    for(UInt k = 0; k < B.columns(); k++)
      copy(bn, B.slice(k, k, bn.rows(), 1));

    for(UInt idxStart = 0; idxStart < output.rows(); idxStart+=blockSize)
    {
      UInt columnCount = std::min(output.rows() - idxStart, blockSize);
      UInt rowCount = std::min(output.rows() - idxStart, B.rows());
      matMult(1.0, B.slice(0, 0, rowCount, columnCount), padded.row(idxStart, columnCount), output.row(idxStart, rowCount));
    }

    if(an.size() > 1)
    {
      Matrix A(an.rows() + blockSize - 1, blockSize);
      for(UInt k = 0; k < A.columns(); k++)
        copy(an, A.slice(k, k, an.rows(), 1));

      MatrixSlice A1(A);
      A1.setType(Matrix::TRIANGULAR, Matrix::LOWER);

      for(UInt idxStart = 0; idxStart < output.rows(); idxStart+=blockSize)
      {
        UInt columnCount = std::min(output.rows() - idxStart, blockSize);
        if(idxStart > 0)
          matMult(-1.0, A.row(blockSize, std::min(an.size() - 1, columnCount)), output.row(idxStart - blockSize, blockSize), output.row(idxStart, std::min(an.size() - 1, columnCount)));

        triangularSolve(1.0, A1.slice(0, 0, columnCount, columnCount), output.row(idxStart, columnCount));
      }
    }

    if(backward)
    {
      for(UInt k = 0; k < output.rows()/2; k++)
        swap(output.row(k), output.row(output.rows() - k - 1));
    }

    return trim(output, warmup(), bnStartIndex, padType);
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

std::vector<std::complex<Double>> DigitalFilterARMA::frequencyResponse(UInt length) const
{
  try
  {
    if((bn.rows() > length) || (an.rows() > length))
      throw(Exception("length must be at least"+std::max(bn.rows(), an.rows())%"%i"s+" for this filter"));

    Vector bPad(length);
    copy(bn.row(bnStartIndex, bn.rows()-bnStartIndex), bPad.row(0, bn.rows()-bnStartIndex));
    copy(bn.row(0, bnStartIndex), bPad.row(bPad.rows()-bnStartIndex, bnStartIndex));

    Vector aPad(length);
    copy(an, aPad.row(0, an.rows()));

    if(backward) // reflect around element one
      for(UInt k=0; k<std::max(bn.rows(), an.rows()); k++)
      {
        std::swap(aPad(k+1), aPad(aPad.rows()-1-k));
        std::swap(bPad(k+1), bPad(bPad.rows()-1-k));
      }

    auto A = Fourier::fft(aPad);
    auto B = Fourier::fft(bPad);
    std::vector<std::complex<Double>> F(A.size());
    for(UInt k=0; k<F.size(); k++)
      F.at(k) = (std::abs(A.at(k))>0.) ? (B.at(k)/A.at(k)) : 1.;

    return F;
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

UInt DigitalFilterARMA::warmup() const
{
  return std::max(std::max(bn.rows()-bnStartIndex-1, bnStartIndex), 3*an.rows());
}

/***********************************************/
/***********************************************/

Matrix DigitalFilterBase::pad(const_MatrixSliceRef input, UInt length, UInt timeShift, PadType padType)
{
  try
  {
    if(padType == PadType::NONE)
    {
      if(timeShift > 0)
      {
        Matrix padded(input.rows()+timeShift, input.columns());
        copy(input, padded.row(0, input.rows()));
        return padded;
      }
      else
        return input;
    }

    if(input.rows()<1)
      throw(Exception("Trying to pad a zero length array ("+input.rows()%"%i"s + " x "+ input.columns()%"%i"s+")."));

    Matrix padded(2*length+input.rows()+timeShift, input.columns());
    copy(input, padded.row(length, input.rows()));

    switch(padType)
    {
      case(PadType::ZERO):
        break;

      case(PadType::CONSTANT):
        for(UInt k=0; k<length; k++)
        {
          copy(input.row(0), padded.row(k));
          copy(input.row(input.rows()-1), padded.row(input.rows() + length + k));
        }
        break;

      case(PadType::PERIODIC):
        if(input.rows()<length)
          throw(Exception("Time series is too short ( <"+input.rows()%"%i"s+"> elements) to apply periodic padding for a filter with a warmup length of <"+length%"%i"s+">."));
        for(UInt k=0; k<length; k++)
        {
          copy(input.row(input.rows()-length+k), padded.row(k));
          copy(input.row(k), padded.row(input.rows() + length + k));
        }
        break;

      case(PadType::SYMMETRIC):
        if(input.rows()<length+1)
          throw(Exception("Time series is too short ( <"+input.rows()%"%i"s+"> elements) to apply symmetric padding for a filter with a warmup length of <"+length%"%i"s+">."));
        for(UInt k=0; k<length; k++)
        {
          copy(input.row(k+1), padded.row(length-1-k));
          copy(input.row(input.rows()-2-k), padded.row(input.rows() + length + k));
        }
        break;

      default:
        throw(Exception("Unknown pad type."));
    }

    return padded;
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

Matrix DigitalFilterBase::trim(const_MatrixSliceRef input, UInt length, UInt timeShift, PadType padType)
{
  try
  {
    if(padType == PadType::NONE)
    {
      if(timeShift > 0)
      {
        return Matrix(input.row(timeShift, input.rows() - timeShift));
      }
      else
        return input;
    }

    return Matrix(input.row(length + timeShift, input.rows()-2*length - timeShift));
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/
/***********************************************/

template<> Bool readConfig(Config &config, const std::string &name, DigitalFilterBase::PadType &padType, Config::Appearance mustSet, const std::string &defaultValue, const std::string &annotation)
{
  try
  {
    std::string choice;
    if(readConfigChoice(config, name, choice, mustSet, defaultValue, annotation))
    {
      if(readConfigChoiceElement(config, "none",      choice, "no padding is applied"))                          padType = DigitalFilterBase::PadType::NONE;
      if(readConfigChoiceElement(config, "zero",      choice, "zero padding"))                                   padType = DigitalFilterBase::PadType::ZERO;
      if(readConfigChoiceElement(config, "constant",  choice, "pad using first and last value"))                 padType = DigitalFilterBase::PadType::CONSTANT;
      if(readConfigChoiceElement(config, "periodic",  choice, "periodic continuation of matrix"))                padType = DigitalFilterBase::PadType::PERIODIC;
      if(readConfigChoiceElement(config, "symmetric", choice, "symmetric continuation around the matrix edges")) padType = DigitalFilterBase::PadType::SYMMETRIC;
      endChoice(config);
      return TRUE;
    }

    return FALSE;
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/