File: digitalFilter.h

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (170 lines) | stat: -rw-r--r-- 7,042 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/***********************************************/
/**
* @file digitalFilter.h
*
* @brief Digital filter implementation.
*
* @author Matthias Ellmer
* @author Andreas Kvas
* @date 2015-10-29
*
*/
/***********************************************/

#ifndef __GROOPS_DIGITALFILTER__
#define __GROOPS_DIGITALFILTER__


// Latex documentation
#ifdef DOCSTRING_DigitalFilter
static const char *docstringDigitalFilter = R"(
\section{DigitalFilter}\label{digitalFilterType}
Digital filter implementation for the filtering of equally spaced time series. This class implements the filter equations as
\begin{equation}\label{digitalFilterType:arma}
  \sum_{l=0}^Q a_l y_{n-l} = \sum_{k=-p_0}^{P-p_0-1} b_k x_{n-k}, \hspace{25pt} a_0 = 1,
\end{equation}
where $Q$ is the autoregressive (AR) order and $P$ is the moving average (MA) order. Note that the MA part can also be non-causal.
The characteristics of a filter cascade can be computed by the programs \program{DigitalFilter2FrequencyResponse} and \program{DigitalFilter2ImpulseResponse}.
To apply a filter cascade to a time series (or an instrument file ) use \program{InstrumentFilter}.
Each filter can be applyed in forward and backward direction by setting \config{backwardDirection}.
If the same filter is applied in both directions, the combined filter has zero phase and the squared magnitude response.
Setting \config{inFrequencyDomain} to true applies the transfer function of the filter to the DFT of the input and synthesizes the result, i.e.:
\begin{equation}
  y_n = \mathcal{F}^{-1}\{H\cdot\mathcal{F}\{x_n\}\}.
\end{equation}
This is equivalent to setting \config{padType} to \config{periodic}.

To reduce warmup effects, the input time series can be padded by choosing a \config{padType}:
\begin{itemize}
\item \config{none}: no padding is applied
\item \config{zero}: zeros are appended at the beginning and end of the input time series
\item \config{constant}: the beginning of the input time series is padded with the first value, the end is padded with the last value
\item \config{periodic}: periodic continuation of the input time series (i.,e. the beginning is padded with the last epochs and the end is padded with the first epochs)
\item \config{symmetric}: beginning and end are reflected around the first and last epoch respectively
\end{itemize}
)";
#endif

/***********************************************/

#include "base/import.h"
#include "config/config.h"

/**
* @defgroup digitalFilterGroup DigitalFilter
* @brief Digital filter implementation.
* @ingroup classesGroup */
/// @{

/***** TYPES ***********************************/

class DigitalFilter;
class DigitalFilterBase;
typedef std::shared_ptr<DigitalFilter> DigitalFilterPtr;

/***** CLASS ***********************************/

/** @brief Digital filter implementation.
* An Instance can be created by @ref readConfig. */
class DigitalFilter
{
private:
  std::vector<DigitalFilterBase*> filters;

public:
  /** @brief Constructor from config. */
  DigitalFilter(Config &config, const std::string &name);

  /// Destructor.
 ~DigitalFilter();

  /** @brief Filter a signal along the first dimension.
  * The signal is filtered along the first axis. Transpose the input to filter
  * along the second. Take caution of warmup effects.
  * @param input   The time series to be filtered.
  * @returns The filtered time series  */
  Matrix filter(const_MatrixSliceRef input) const;

  /** @brief Frequency response evaluated at equally spaced spectral lines.
  * @param length of data in time domain
  * @return complex representation of the frequency response  */
  std::vector<std::complex<Double>> frequencyResponse(UInt length) const;

  /** @brief creates an derived instance of this class. */
  static DigitalFilterPtr create(Config &config, const std::string &name) {return DigitalFilterPtr(new DigitalFilter(config, name));}
};

/***** FUNCTIONS *******************************/

/** @brief Creates an instance of the class DigitalFilter.
* Search for a node with @a name in the Config node.
* if @a name is not found the function returns FALSE and a class without times is created.
* @param config The config node which includes the node with the options for this class
* @param name Tag name in the config.
* @param[out] digitalFilter Created class.
* @param mustSet If is MUSTSET and @a name is not found, this function throws an exception instead of returning with FALSE.
* @param defaultValue Ignored at the moment.
* @param annotation Description of the function of this class.
* @relates DigitalFilter */
template<> Bool readConfig(Config &config, const std::string &name, DigitalFilterPtr &digitalFilter, Config::Appearance mustSet, const std::string &defaultValue, const std::string &annotation);

/***** CLASS ***********************************/

// Internal class
class DigitalFilterBase
{
public:
  enum class PadType {NONE, ZERO, CONSTANT, PERIODIC, SYMMETRIC};

  static Matrix pad (const_MatrixSliceRef input, UInt length, UInt timeShift, PadType padType);
  static Matrix trim(const_MatrixSliceRef input, UInt length, UInt timeShift, PadType padType);

public:
  virtual ~DigitalFilterBase() {}
  virtual Matrix filter(const_MatrixSliceRef input) const = 0;
  virtual std::vector<std::complex<Double>> frequencyResponse(UInt length) const = 0;
};

/***** CLASS ***********************************/

// Internal class: default implementation with ARMA coefficients
class DigitalFilterARMA : public DigitalFilterBase
{
protected:
  Vector  an, bn; // AR, MA coefficients
  UInt    bnStartIndex;
  Bool    inFrequencyDomain;
  Bool    backward;
  PadType padType;

  virtual UInt warmup() const;

public:
  DigitalFilterARMA() : inFrequencyDomain(FALSE), backward(FALSE), padType(PadType::NONE) {}
  virtual ~DigitalFilterARMA() {}
  virtual Matrix filter(const_MatrixSliceRef input) const;
  virtual std::vector<std::complex<Double>> frequencyResponse(UInt length) const;
};

/***** FUNCTIONS *******************************/

/** @brief Creates an instance of the class PadType.
* Search for a node with @a name in the Config node.
* if @a name is not found the function returns FALSE and a class identity filter is created.
* @param config The config node which includes the node with the options for this class
* @param name Tag name in the config.
* @param[out] padType Created class.
* @param mustSet If is MUSTSET and @a name is not found, this function throws an exception instead of returning with FALSE.
* @param defaultValue Ignored at the moment.
* @param annotation Description of the function of this class.
* @relates DigitalFilter */
template<> Bool readConfig(Config &config, const std::string &name, DigitalFilterBase::PadType &padType, Config::Appearance mustSet, const std::string &defaultValue, const std::string &annotation);

// inline std::string DigitalFilterPadding_typeName() {return "paddingType";}
// void DigitalFilterPadding_registerConfigSchema(Config &config);

/// @}

/***********************************************/

#endif /* __GROOPS_DIGITALFILTER__ */