1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
/***********************************************/
/**
* @file digitalFilter.h
*
* @brief Digital filter implementation.
*
* @author Matthias Ellmer
* @author Andreas Kvas
* @date 2015-10-29
*
*/
/***********************************************/
#ifndef __GROOPS_DIGITALFILTER__
#define __GROOPS_DIGITALFILTER__
// Latex documentation
#ifdef DOCSTRING_DigitalFilter
static const char *docstringDigitalFilter = R"(
\section{DigitalFilter}\label{digitalFilterType}
Digital filter implementation for the filtering of equally spaced time series. This class implements the filter equations as
\begin{equation}\label{digitalFilterType:arma}
\sum_{l=0}^Q a_l y_{n-l} = \sum_{k=-p_0}^{P-p_0-1} b_k x_{n-k}, \hspace{25pt} a_0 = 1,
\end{equation}
where $Q$ is the autoregressive (AR) order and $P$ is the moving average (MA) order. Note that the MA part can also be non-causal.
The characteristics of a filter cascade can be computed by the programs \program{DigitalFilter2FrequencyResponse} and \program{DigitalFilter2ImpulseResponse}.
To apply a filter cascade to a time series (or an instrument file ) use \program{InstrumentFilter}.
Each filter can be applyed in forward and backward direction by setting \config{backwardDirection}.
If the same filter is applied in both directions, the combined filter has zero phase and the squared magnitude response.
Setting \config{inFrequencyDomain} to true applies the transfer function of the filter to the DFT of the input and synthesizes the result, i.e.:
\begin{equation}
y_n = \mathcal{F}^{-1}\{H\cdot\mathcal{F}\{x_n\}\}.
\end{equation}
This is equivalent to setting \config{padType} to \config{periodic}.
To reduce warmup effects, the input time series can be padded by choosing a \config{padType}:
\begin{itemize}
\item \config{none}: no padding is applied
\item \config{zero}: zeros are appended at the beginning and end of the input time series
\item \config{constant}: the beginning of the input time series is padded with the first value, the end is padded with the last value
\item \config{periodic}: periodic continuation of the input time series (i.,e. the beginning is padded with the last epochs and the end is padded with the first epochs)
\item \config{symmetric}: beginning and end are reflected around the first and last epoch respectively
\end{itemize}
)";
#endif
/***********************************************/
#include "base/import.h"
#include "config/config.h"
/**
* @defgroup digitalFilterGroup DigitalFilter
* @brief Digital filter implementation.
* @ingroup classesGroup */
/// @{
/***** TYPES ***********************************/
class DigitalFilter;
class DigitalFilterBase;
typedef std::shared_ptr<DigitalFilter> DigitalFilterPtr;
/***** CLASS ***********************************/
/** @brief Digital filter implementation.
* An Instance can be created by @ref readConfig. */
class DigitalFilter
{
private:
std::vector<DigitalFilterBase*> filters;
public:
/** @brief Constructor from config. */
DigitalFilter(Config &config, const std::string &name);
/// Destructor.
~DigitalFilter();
/** @brief Filter a signal along the first dimension.
* The signal is filtered along the first axis. Transpose the input to filter
* along the second. Take caution of warmup effects.
* @param input The time series to be filtered.
* @returns The filtered time series */
Matrix filter(const_MatrixSliceRef input) const;
/** @brief Frequency response evaluated at equally spaced spectral lines.
* @param length of data in time domain
* @return complex representation of the frequency response */
std::vector<std::complex<Double>> frequencyResponse(UInt length) const;
/** @brief creates an derived instance of this class. */
static DigitalFilterPtr create(Config &config, const std::string &name) {return DigitalFilterPtr(new DigitalFilter(config, name));}
};
/***** FUNCTIONS *******************************/
/** @brief Creates an instance of the class DigitalFilter.
* Search for a node with @a name in the Config node.
* if @a name is not found the function returns FALSE and a class without times is created.
* @param config The config node which includes the node with the options for this class
* @param name Tag name in the config.
* @param[out] digitalFilter Created class.
* @param mustSet If is MUSTSET and @a name is not found, this function throws an exception instead of returning with FALSE.
* @param defaultValue Ignored at the moment.
* @param annotation Description of the function of this class.
* @relates DigitalFilter */
template<> Bool readConfig(Config &config, const std::string &name, DigitalFilterPtr &digitalFilter, Config::Appearance mustSet, const std::string &defaultValue, const std::string &annotation);
/***** CLASS ***********************************/
// Internal class
class DigitalFilterBase
{
public:
enum class PadType {NONE, ZERO, CONSTANT, PERIODIC, SYMMETRIC};
static Matrix pad (const_MatrixSliceRef input, UInt length, UInt timeShift, PadType padType);
static Matrix trim(const_MatrixSliceRef input, UInt length, UInt timeShift, PadType padType);
public:
virtual ~DigitalFilterBase() {}
virtual Matrix filter(const_MatrixSliceRef input) const = 0;
virtual std::vector<std::complex<Double>> frequencyResponse(UInt length) const = 0;
};
/***** CLASS ***********************************/
// Internal class: default implementation with ARMA coefficients
class DigitalFilterARMA : public DigitalFilterBase
{
protected:
Vector an, bn; // AR, MA coefficients
UInt bnStartIndex;
Bool inFrequencyDomain;
Bool backward;
PadType padType;
virtual UInt warmup() const;
public:
DigitalFilterARMA() : inFrequencyDomain(FALSE), backward(FALSE), padType(PadType::NONE) {}
virtual ~DigitalFilterARMA() {}
virtual Matrix filter(const_MatrixSliceRef input) const;
virtual std::vector<std::complex<Double>> frequencyResponse(UInt length) const;
};
/***** FUNCTIONS *******************************/
/** @brief Creates an instance of the class PadType.
* Search for a node with @a name in the Config node.
* if @a name is not found the function returns FALSE and a class identity filter is created.
* @param config The config node which includes the node with the options for this class
* @param name Tag name in the config.
* @param[out] padType Created class.
* @param mustSet If is MUSTSET and @a name is not found, this function throws an exception instead of returning with FALSE.
* @param defaultValue Ignored at the moment.
* @param annotation Description of the function of this class.
* @relates DigitalFilter */
template<> Bool readConfig(Config &config, const std::string &name, DigitalFilterBase::PadType &padType, Config::Appearance mustSet, const std::string &defaultValue, const std::string &annotation);
// inline std::string DigitalFilterPadding_typeName() {return "paddingType";}
// void DigitalFilterPadding_registerConfigSchema(Config &config);
/// @}
/***********************************************/
#endif /* __GROOPS_DIGITALFILTER__ */
|