1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
|
/***********************************************/
/**
* @file eclipse.cpp
*
* @brief Shadowing of satellites by moon and Earth.
*
* @author Torsten Mayer-Guerr
* @date 2020-03-08
*
*/
/***********************************************/
#define DOCSTRING_Eclipse
#include "base/import.h"
#include "config/configRegister.h"
#include "classes/eclipse/eclipseConical.h"
#include "classes/eclipse/eclipseSOLAARS.h"
#include "classes/eclipse/eclipse.h"
/***********************************************/
GROOPS_REGISTER_CLASS(Eclipse, "eclipseType",
EclipseConical,
EclipseSOLAARS)
GROOPS_READCONFIG_CLASS(Eclipse, "eclipseType")
/***********************************************/
EclipsePtr Eclipse::create(Config &config, const std::string &name)
{
try
{
EclipsePtr eclipse;
std::string choice;
readConfigChoice(config, name, choice, Config::MUSTSET, "", "Shadowing of satellites by moon and Earth");
if(readConfigChoiceElement(config, "conical", choice, "Umbra and penumbra shadow model"))
eclipse = EclipsePtr(new EclipseConical(config));
if(readConfigChoiceElement(config, "SOLAARS", choice, "Penumbra with Oblateness and Lower Atmospheric Absorption, Refraction, and Scattering"))
eclipse = EclipsePtr(new EclipseSOLAARS(config));
endChoice(config);
return eclipse;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
// For detailed information on this calculation, see Montenbruck and Gill (2000, pp. 80-83)
Double Eclipse::shadowScalingFactor(const Vector3d &posSat, const Vector3d &posSun, const Vector3d &posBody, const Double &radiusBody)
{
try
{
const Double R_Sun = 6.96342e8;
const Double distSatSun = (posSat-posSun).r();
const Double distSatBody = (posSat-posBody).r();
// Apparent radius of Sun (a),
// apparent radius of occulting body (Earth, Moon) (b),
// apparent separation of the centers of both bodies (c)
const Double a = std::asin(R_Sun/distSatSun);
const Double b = std::asin(radiusBody/distSatBody);
const Double c = std::acos(inner(posBody-posSat, posSun-posSat)/(distSatBody*distSatSun));
// Satellite is not in occulting body's (Earth, Moon) shadow
if(a+b <= c)
return 1.;
// Satellite is in full occulting body's (Earth, Moon) shadow
if(std::fabs(a-b) > c)
return 0.;
// Satellite is in partial occulting body's (Earth, Moon) shadow
const Double x = (c*c+a*a-b*b)/(2*c);
const Double y = std::sqrt(a*a-x*x);
const Double A = a*a*std::acos(x/a)+b*b*std::acos((c-x)/b)-c*y; // Apparent visible area of the Sun
return 1-A/(PI*a*a);
}
catch (std::exception& e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|