1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
/***********************************************/
/**
* @file gravityfield.cpp
*
* @brief Function values of (time variable) gravity fields.
*
* @author Torsten Mayer-Guerr
* @date 2001-08-15
*
*/
/***********************************************/
#define DOCSTRING_Gravityfield
#include "base/import.h"
#include "base/sphericalHarmonics.h"
#include "config/configRegister.h"
#include "classes/gravityfield/gravityfieldPotentialCoefficients.h"
#include "classes/gravityfield/gravityfieldPotentialCoefficientsInterior.h"
#include "classes/gravityfield/gravityfieldInInterval.h"
#include "classes/gravityfield/gravityfieldFromParametrization.h"
#include "classes/gravityfield/gravityfieldTimeSplines.h"
#include "classes/gravityfield/gravityfieldTrend.h"
#include "classes/gravityfield/gravityfieldOscillation.h"
#include "classes/gravityfield/gravityfieldTides.h"
#include "classes/gravityfield/gravityfieldTopography.h"
#include "classes/gravityfield/gravityfieldEarthquakeOscillation.h"
#include "classes/gravityfield/gravityfieldFilter.h"
#include "classes/gravityfield/gravityfieldGroup.h"
#include "classes/gravityfield/gravityfield.h"
/***********************************************/
GROOPS_REGISTER_CLASS(Gravityfield, "gravityfieldType",
GravityfieldPotentialCoefficients,
GravityfieldPotentialCoefficientsInterior,
GravityfieldFromParametrization,
GravityfieldTimeSplines,
GravityfieldTrend,
GravityfieldOscillation,
GravityfieldInInterval,
GravityfieldTides,
GravityfieldTopography,
GravityfieldEarthquakeOscillation,
GravityfieldFilter,
GravityfieldGroup)
GROOPS_READCONFIG_UNBOUNDED_CLASS(Gravityfield, "gravityfieldType")
/***********************************************/
Gravityfield::Gravityfield(Config &config, const std::string &name)
{
try
{
GravityfieldPotentialCoefficients *coeff = nullptr;
GravityfieldPotentialCoefficientsInterior *coeffInterior = nullptr;
std::string type;
while(readConfigChoice(config, name, type, Config::OPTIONAL, "", "functions of the gravity field"))
{
renameDeprecatedChoice(config, type, "fromRepresentation", "fromParametrization", date2time(2020, 6, 3));
if(readConfigChoiceElement(config, "potentialCoefficients", type, "file with potential coefficients"))
{
if(!coeff)
gravityfield.push_back(coeff = new GravityfieldPotentialCoefficients(config));
else
coeff->addPotentialCoefficients(GravityfieldPotentialCoefficients(config).sphericalHarmonics(Time()));
}
if(readConfigChoiceElement(config, "potentialCoefficientsInterior", type, "file with potential coefficients"))
{
if(!coeffInterior)
gravityfield.push_back(coeffInterior = new GravityfieldPotentialCoefficientsInterior(config));
else
coeffInterior->addPotentialCoefficients(GravityfieldPotentialCoefficientsInterior(config).sphericalHarmonics(Time()));
}
if(readConfigChoiceElement(config, "fromParametrization", type, "from a solution vector with given parametrization"))
gravityfield.push_back(new GravityfieldFromParametrization(config));
if(readConfigChoiceElement(config, "timeSplines", type, "file with splines in time domain"))
gravityfield.push_back(new GravityfieldTimeSplines(config));
if(readConfigChoiceElement(config, "trend", type, "gravityfield as trend"))
gravityfield.push_back(new GravityfieldTrend(config));
if(readConfigChoiceElement(config, "oscillation", type, "gravityfield as oscillation"))
gravityfield.push_back(new GravityfieldOscillation(config));
if(readConfigChoiceElement(config, "inInterval", type, "gravityfields only valid in specific time interval"))
gravityfield.push_back(new GravityfieldInInterval(config));
if(readConfigChoiceElement(config, "tides", type, "gravityfield from tide models"))
gravityfield.push_back(new GravityfieldTides(config));
if(readConfigChoiceElement(config, "topography", type, "gravityfield from topographic masses"))
gravityfield.push_back(new GravityfieldTopography(config));
if(readConfigChoiceElement(config, "earthquakeOscillation", type, "gravityfield from earthquake oscillation"))
gravityfield.push_back(new GravityfieldEarthquakeOscillation(config));
if(readConfigChoiceElement(config, "filter", type, "filtered spherical harmonics"))
gravityfield.push_back(new GravityfieldFilter(config));
if(readConfigChoiceElement(config, "group", type, "group gravityfields"))
gravityfield.push_back(new GravityfieldGroup(config));
endChoice(config);
if(isCreateSchema(config))
return;
};
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Gravityfield::~Gravityfield()
{
for(UInt i=0; i<gravityfield.size(); i++)
delete gravityfield.at(i);
}
/***********************************************/
Double Gravityfield::potential(const Time &time, const Vector3d &point) const
{
Double sum = 0.0;
for(UInt i=0; i<gravityfield.size(); i++)
sum += gravityfield.at(i)->potential(time, point);
return sum;
}
/***********************************************/
Double Gravityfield::radialGradient(const Time &time, const Vector3d &point) const
{
Double sum = 0.0;
for(UInt i=0; i<gravityfield.size(); i++)
sum += gravityfield.at(i)->radialGradient(time, point);
return sum;
}
/***********************************************/
Double Gravityfield::field(const Time &time, const Vector3d &point, const Kernel &kernel) const
{
Double sum = 0.0;
for(UInt i=0; i<gravityfield.size(); i++)
sum += gravityfield.at(i)->field(time, point, kernel);
return sum;
}
/***********************************************/
Vector3d Gravityfield::gravity(const Time &time, const Vector3d &point) const
{
Vector3d sum;
for(UInt i=0; i<gravityfield.size(); i++)
sum += gravityfield.at(i)->gravity(time, point);
return sum;
}
/***********************************************/
Tensor3d Gravityfield::gravityGradient(const Time &time, const Vector3d &point) const
{
Tensor3d sum;
for(UInt i=0; i<gravityfield.size(); i++)
sum += gravityfield.at(i)->gravityGradient(time, point);
return sum;
}
/***********************************************/
Vector3d Gravityfield::deformation(const Time &time, const Vector3d &point, Double gravity, const Vector &hn, const Vector &ln) const
{
Vector3d sum;
for(UInt i=0; i<gravityfield.size(); i++)
sum += gravityfield.at(i)->deformation(time, point, gravity, hn, ln);
return sum;
}
/***********************************************/
void Gravityfield::deformation(const std::vector<Time> &time, const std::vector<Vector3d> &point, const std::vector<Double> &gravity, const Vector &hn, const Vector &ln, std::vector<std::vector<Vector3d>> &disp) const
{
for(UInt i=0; i<gravityfield.size(); i++)
gravityfield.at(i)->deformation(time, point, gravity, hn, ln, disp);
}
/***********************************************/
SphericalHarmonics Gravityfield::sphericalHarmonics(const Time &time, UInt maxDegree, UInt minDegree, Double GM, Double R) const
{
try
{
if(gravityfield.size()==0)
return SphericalHarmonics().get(maxDegree, minDegree, GM, R);
SphericalHarmonics harmonics = gravityfield.at(0)->sphericalHarmonics(time, maxDegree, minDegree, GM, R);
for(UInt i=1; i<gravityfield.size(); i++)
harmonics += gravityfield.at(i)->sphericalHarmonics(time, maxDegree, minDegree, GM, R);
return harmonics;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Matrix Gravityfield::sphericalHarmonicsCovariance(const Time &time, UInt maxDegree, UInt minDegree, Double GM, Double R) const
{
try
{
Matrix Cov;
for(UInt i=0; i<gravityfield.size(); i++)
{
Matrix Cov2 = gravityfield.at(i)->sphericalHarmonicsCovariance(time, maxDegree, minDegree, GM, R);
if(Cov2.size() == 0)
continue;
if(Cov.size() == 0)
{
Cov = Cov2;
continue;
}
if(Cov.rows()<Cov2.columns())
{
Matrix tmp = Cov;
Cov = Cov2;
if((Cov.getType()==Matrix::SYMMETRIC) && (Cov2.getType()==Matrix::SYMMETRIC))
{
axpy(1., tmp, Cov.slice(0,0,tmp.rows(),tmp.columns()));
continue;
}
else if((Cov.getType()!=Matrix::SYMMETRIC) && (Cov2.getType()!=Matrix::SYMMETRIC))
{
axpy(1., tmp, Cov.row(0,tmp.rows()));
continue;
}
else if((Cov.getType()!=Matrix::SYMMETRIC) && (Cov2.getType()==Matrix::SYMMETRIC))
{
for(UInt i=0; i<tmp.rows(); i++)
Cov(i,i) += tmp(i,0);
continue;
}
else if((Cov.getType()==Matrix::SYMMETRIC) && (Cov2.getType()!=Matrix::SYMMETRIC))
{
Cov = Matrix(Cov2.rows(), Matrix::SYMMETRIC);
copy(tmp, Cov.slice(0,0,tmp.rows(),tmp.columns()));
}
else
throw(Exception("something strange"));
}
if((Cov.getType()==Matrix::SYMMETRIC) && (Cov2.getType()==Matrix::SYMMETRIC))
Cov.slice(0,0,Cov2.rows(),Cov2.columns()) += Cov2;
else if((Cov.getType()!=Matrix::SYMMETRIC) && (Cov2.getType()!=Matrix::SYMMETRIC))
Cov.row(0,Cov2.rows()) += Cov2;
else if((Cov.getType()==Matrix::SYMMETRIC) && (Cov2.getType()!=Matrix::SYMMETRIC))
for(UInt i=0; i<Cov2.rows(); i++)
Cov(i,i) += Cov2(i,0);
else
throw(Exception("something strange"));
}
return Cov;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Matrix Gravityfield::variance(const Time &time, const std::vector<Vector3d> &point, const Kernel &kernel) const
{
Matrix D(point.size(), Matrix::SYMMETRIC);
for(UInt i=0; i<gravityfield.size(); i++)
gravityfield.at(i)->variance(time, point, kernel, D);
return D;
}
/***********************************************/
Double Gravityfield::variance(const Time &time, const Vector3d &point, const Kernel &kernel) const
{
Double sigma2 = 0;
for(UInt i=0; i<gravityfield.size(); i++)
sigma2 += gravityfield.at(i)->variance(time, point, kernel);
return sigma2;
}
/***********************************************/
Double Gravityfield::covariance(const Time &time, const Vector3d &point1, const Vector3d &point2, const Kernel &kernel) const
{
Double sigma2 = 0;
for(UInt i=0; i<gravityfield.size(); i++)
sigma2 += gravityfield.at(i)->covariance(time, point1, point2, kernel);
return sigma2;
}
/***********************************************/
/***********************************************/
Matrix GravityfieldBase::deformationMatrix(const std::vector<Vector3d> &point, const std::vector<Double> &gravity,
const Vector &hn, const Vector &ln, Double GM, Double R, UInt maxDegree)
{
try
{
Matrix A(3*point.size(), (maxDegree+1)*(maxDegree+1));
for(UInt k=0; k<point.size(); k++)
{
Vector3d up = normalize(point.at(k));
Matrix Cnm, Snm;
SphericalHarmonics::CnmSnm(1/R * point.at(k), maxDegree+1, Cnm, Snm);
// 0. order
for(UInt n=0; n<=maxDegree; n++)
{
Double wm0 = sqrt((n+1.)*(n+1.));
Double wp1 = sqrt((n+1.)*(n+2.)) / sqrt(2.0);
Double Cm0 = wm0*Cnm(n+1,0);
Double Cp1 = wp1*Cnm(n+1,1); Double Sp1 = wp1*Snm(n+1,1);
Double Vn = GM/R * Cnm(n,0);
Vector3d gradVn = GM/(2*R) * sqrt((2*n+1.)/(2*n+3.)) * Vector3d(-2*Cp1, -2*Sp1, -2*Cm0);
Vector3d disp = (hn(n)/gravity.at(k)*Vn) * up // vertical
+ (ln(n)/gravity.at(k)) * (gradVn-inner(gradVn,up)*up); // horizontal
A(3*k+0, n*n) = disp.x();
A(3*k+1, n*n) = disp.y();
A(3*k+2, n*n) = disp.z();
}
// other orders
for(UInt m=1; m<=maxDegree; m++)
for(UInt n=m; n<=maxDegree; n++)
{
Double wm1 = sqrt((n-m+1.)*(n-m+2.)) * ((m==1) ? sqrt(2.0) : 1.0);
Double wm0 = sqrt((n-m+1.)*(n+m+1.));
Double wp1 = sqrt((n+m+1.)*(n+m+2.));
Double Cm1 = wm1*Cnm(n+1,m-1); Double Sm1 = wm1*Snm(n+1,m-1);
Double Cm0 = wm0*Cnm(n+1,m ); Double Sm0 = wm0*Snm(n+1,m );
Double Cp1 = wp1*Cnm(n+1,m+1); Double Sp1 = wp1*Snm(n+1,m+1);
Double Vn = GM/R * Cnm(n,m);
Vector3d gradVn = GM/(2*R) * sqrt((2*n+1.)/(2*n+3.)) * Vector3d(Cm1-Cp1, -Sm1-Sp1, -2*Cm0);
Vector3d disp = (hn(n)/gravity.at(k)*Vn) * up // vertical
+ (ln(n)/gravity.at(k)) * (gradVn-inner(gradVn,up)*up); // horizontal
A(3*k+0, n*n+2*m-1) = disp.x();
A(3*k+1, n*n+2*m-1) = disp.y();
A(3*k+2, n*n+2*m-1) = disp.z();
Vn = GM/R * Snm(n,m);
gradVn = GM/(2*R) * sqrt((2*n+1.)/(2*n+3.)) * Vector3d(Sm1-Sp1, Cm1+Cp1, -2*Sm0);
disp = (hn(n)/gravity.at(k)*Vn) * up // vertical
+ (ln(n)/gravity.at(k)) * (gradVn-inner(gradVn,up)*up); // horizontal
A(3*k+0, n*n+2*m) = disp.x();
A(3*k+1, n*n+2*m) = disp.y();
A(3*k+2, n*n+2*m) = disp.z();
}
} // for(k=point)
return A;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
// Default implementation
Double GravityfieldBase::field(const Time &time, const Vector3d &point, const Kernel &kernel) const
{
try
{
return kernel.inverseKernel(time, point, *this);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
// Default implementation
Matrix GravityfieldBase::sphericalHarmonicsCovariance(const Time &time, UInt maxDegree, UInt minDegree, Double GM, Double R) const
{
// only diagonal matrix
return sphericalHarmonics(time, maxDegree, minDegree, GM, R).sigma2x();
}
/***********************************************/
// Default implementation
Double GravityfieldBase::variance(const Time &time, const Vector3d &point, const Kernel &kernel) const
{
Matrix D(1, Matrix::SYMMETRIC);
variance(time, {point}, kernel, D);
return D(0,0);
}
/***********************************************/
// Default implementation
Double GravityfieldBase::covariance(const Time &time, const Vector3d &point1, const Vector3d &point2, const Kernel &kernel) const
{
Matrix D(2, Matrix::SYMMETRIC, Matrix::UPPER);
variance(time, {point1, point2}, kernel, D);
return D(0,1);
}
/***********************************************/
|