File: gravityfield.cpp

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (424 lines) | stat: -rw-r--r-- 15,005 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
/***********************************************/
/**
* @file gravityfield.cpp
*
* @brief Function values of (time variable) gravity fields.
*
* @author Torsten Mayer-Guerr
* @date 2001-08-15
*
*/
/***********************************************/

#define DOCSTRING_Gravityfield

#include "base/import.h"
#include "base/sphericalHarmonics.h"
#include "config/configRegister.h"
#include "classes/gravityfield/gravityfieldPotentialCoefficients.h"
#include "classes/gravityfield/gravityfieldPotentialCoefficientsInterior.h"
#include "classes/gravityfield/gravityfieldInInterval.h"
#include "classes/gravityfield/gravityfieldFromParametrization.h"
#include "classes/gravityfield/gravityfieldTimeSplines.h"
#include "classes/gravityfield/gravityfieldTrend.h"
#include "classes/gravityfield/gravityfieldOscillation.h"
#include "classes/gravityfield/gravityfieldTides.h"
#include "classes/gravityfield/gravityfieldTopography.h"
#include "classes/gravityfield/gravityfieldEarthquakeOscillation.h"
#include "classes/gravityfield/gravityfieldFilter.h"
#include "classes/gravityfield/gravityfieldGroup.h"
#include "classes/gravityfield/gravityfield.h"

/***********************************************/

GROOPS_REGISTER_CLASS(Gravityfield, "gravityfieldType",
                      GravityfieldPotentialCoefficients,
                      GravityfieldPotentialCoefficientsInterior,
                      GravityfieldFromParametrization,
                      GravityfieldTimeSplines,
                      GravityfieldTrend,
                      GravityfieldOscillation,
                      GravityfieldInInterval,
                      GravityfieldTides,
                      GravityfieldTopography,
                      GravityfieldEarthquakeOscillation,
                      GravityfieldFilter,
                      GravityfieldGroup)

GROOPS_READCONFIG_UNBOUNDED_CLASS(Gravityfield, "gravityfieldType")

/***********************************************/

Gravityfield::Gravityfield(Config &config, const std::string &name)
{
  try
  {
    GravityfieldPotentialCoefficients         *coeff         = nullptr;
    GravityfieldPotentialCoefficientsInterior *coeffInterior = nullptr;

    std::string type;
    while(readConfigChoice(config, name, type, Config::OPTIONAL, "", "functions of the gravity field"))
    {
      renameDeprecatedChoice(config, type, "fromRepresentation", "fromParametrization", date2time(2020, 6, 3));

      if(readConfigChoiceElement(config, "potentialCoefficients", type, "file with potential coefficients"))
      {
        if(!coeff)
          gravityfield.push_back(coeff = new GravityfieldPotentialCoefficients(config));
        else
          coeff->addPotentialCoefficients(GravityfieldPotentialCoefficients(config).sphericalHarmonics(Time()));
      }
      if(readConfigChoiceElement(config, "potentialCoefficientsInterior", type, "file with potential coefficients"))
      {
        if(!coeffInterior)
          gravityfield.push_back(coeffInterior = new GravityfieldPotentialCoefficientsInterior(config));
        else
          coeffInterior->addPotentialCoefficients(GravityfieldPotentialCoefficientsInterior(config).sphericalHarmonics(Time()));
      }
      if(readConfigChoiceElement(config, "fromParametrization",   type, "from a solution vector with given parametrization"))
        gravityfield.push_back(new GravityfieldFromParametrization(config));
      if(readConfigChoiceElement(config, "timeSplines",           type, "file with splines in time domain"))
        gravityfield.push_back(new GravityfieldTimeSplines(config));
      if(readConfigChoiceElement(config, "trend",                 type, "gravityfield as trend"))
        gravityfield.push_back(new GravityfieldTrend(config));
      if(readConfigChoiceElement(config, "oscillation",           type, "gravityfield as oscillation"))
        gravityfield.push_back(new GravityfieldOscillation(config));
      if(readConfigChoiceElement(config, "inInterval",            type, "gravityfields only valid in specific time interval"))
        gravityfield.push_back(new GravityfieldInInterval(config));
      if(readConfigChoiceElement(config, "tides",                 type, "gravityfield from tide models"))
        gravityfield.push_back(new GravityfieldTides(config));
      if(readConfigChoiceElement(config, "topography",            type, "gravityfield from topographic masses"))
        gravityfield.push_back(new GravityfieldTopography(config));
      if(readConfigChoiceElement(config, "earthquakeOscillation", type, "gravityfield from earthquake oscillation"))
        gravityfield.push_back(new GravityfieldEarthquakeOscillation(config));
      if(readConfigChoiceElement(config, "filter",                type, "filtered spherical harmonics"))
        gravityfield.push_back(new GravityfieldFilter(config));
      if(readConfigChoiceElement(config, "group",                 type, "group gravityfields"))
        gravityfield.push_back(new GravityfieldGroup(config));
      endChoice(config);
      if(isCreateSchema(config))
        return;
    };
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

Gravityfield::~Gravityfield()
{
  for(UInt i=0; i<gravityfield.size(); i++)
    delete gravityfield.at(i);
}

/***********************************************/

Double Gravityfield::potential(const Time &time, const Vector3d &point) const
{
  Double sum = 0.0;
  for(UInt i=0; i<gravityfield.size(); i++)
    sum += gravityfield.at(i)->potential(time, point);
  return sum;
}

/***********************************************/

Double Gravityfield::radialGradient(const Time &time, const Vector3d &point) const
{
  Double sum = 0.0;
  for(UInt i=0; i<gravityfield.size(); i++)
    sum += gravityfield.at(i)->radialGradient(time, point);
  return sum;
}

/***********************************************/

Double Gravityfield::field(const Time &time, const Vector3d &point, const Kernel &kernel) const
{
  Double sum = 0.0;
  for(UInt i=0; i<gravityfield.size(); i++)
    sum += gravityfield.at(i)->field(time, point, kernel);
  return sum;
}

/***********************************************/

Vector3d Gravityfield::gravity(const Time &time, const Vector3d &point) const
{
  Vector3d sum;
  for(UInt i=0; i<gravityfield.size(); i++)
    sum += gravityfield.at(i)->gravity(time, point);
  return sum;
}

/***********************************************/

Tensor3d Gravityfield::gravityGradient(const Time &time, const Vector3d &point) const
{
  Tensor3d sum;
  for(UInt i=0; i<gravityfield.size(); i++)
    sum += gravityfield.at(i)->gravityGradient(time, point);
  return sum;
}

/***********************************************/

Vector3d Gravityfield::deformation(const Time &time, const Vector3d &point, Double gravity, const Vector &hn, const Vector &ln) const
{
  Vector3d sum;
  for(UInt i=0; i<gravityfield.size(); i++)
    sum += gravityfield.at(i)->deformation(time, point, gravity, hn, ln);
  return sum;
}

/***********************************************/

void Gravityfield::deformation(const std::vector<Time> &time, const std::vector<Vector3d> &point, const std::vector<Double> &gravity, const Vector &hn, const Vector &ln, std::vector<std::vector<Vector3d>> &disp) const
{
  for(UInt i=0; i<gravityfield.size(); i++)
    gravityfield.at(i)->deformation(time, point, gravity, hn, ln, disp);
}

/***********************************************/

SphericalHarmonics Gravityfield::sphericalHarmonics(const Time &time, UInt maxDegree, UInt minDegree, Double GM, Double R) const
{
  try
  {
    if(gravityfield.size()==0)
      return SphericalHarmonics().get(maxDegree, minDegree, GM, R);
    SphericalHarmonics harmonics = gravityfield.at(0)->sphericalHarmonics(time, maxDegree, minDegree, GM, R);
    for(UInt i=1; i<gravityfield.size(); i++)
      harmonics += gravityfield.at(i)->sphericalHarmonics(time, maxDegree, minDegree, GM, R);
    return harmonics;
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

Matrix Gravityfield::sphericalHarmonicsCovariance(const Time &time, UInt maxDegree, UInt minDegree, Double GM, Double R) const
{
  try
  {
    Matrix Cov;
    for(UInt i=0; i<gravityfield.size(); i++)
    {
      Matrix Cov2 = gravityfield.at(i)->sphericalHarmonicsCovariance(time, maxDegree, minDegree, GM, R);

      if(Cov2.size() == 0)
        continue;

      if(Cov.size() == 0)
      {
        Cov = Cov2;
        continue;
      }

      if(Cov.rows()<Cov2.columns())
      {
        Matrix tmp = Cov;
        Cov = Cov2;
        if((Cov.getType()==Matrix::SYMMETRIC) && (Cov2.getType()==Matrix::SYMMETRIC))
        {
          axpy(1., tmp, Cov.slice(0,0,tmp.rows(),tmp.columns()));
          continue;
        }
        else if((Cov.getType()!=Matrix::SYMMETRIC) && (Cov2.getType()!=Matrix::SYMMETRIC))
        {
          axpy(1., tmp, Cov.row(0,tmp.rows()));
          continue;
        }
        else if((Cov.getType()!=Matrix::SYMMETRIC) && (Cov2.getType()==Matrix::SYMMETRIC))
        {
          for(UInt i=0; i<tmp.rows(); i++)
            Cov(i,i) += tmp(i,0);
          continue;
        }
        else if((Cov.getType()==Matrix::SYMMETRIC) && (Cov2.getType()!=Matrix::SYMMETRIC))
        {
          Cov = Matrix(Cov2.rows(), Matrix::SYMMETRIC);
          copy(tmp, Cov.slice(0,0,tmp.rows(),tmp.columns()));
        }
        else
          throw(Exception("something strange"));
      }

      if((Cov.getType()==Matrix::SYMMETRIC) && (Cov2.getType()==Matrix::SYMMETRIC))
        Cov.slice(0,0,Cov2.rows(),Cov2.columns()) += Cov2;
      else if((Cov.getType()!=Matrix::SYMMETRIC) && (Cov2.getType()!=Matrix::SYMMETRIC))
        Cov.row(0,Cov2.rows()) += Cov2;
      else if((Cov.getType()==Matrix::SYMMETRIC) && (Cov2.getType()!=Matrix::SYMMETRIC))
        for(UInt i=0; i<Cov2.rows(); i++)
          Cov(i,i) += Cov2(i,0);
      else
        throw(Exception("something strange"));
    }

    return Cov;
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

Matrix Gravityfield::variance(const Time &time, const std::vector<Vector3d> &point, const Kernel &kernel) const
{
  Matrix D(point.size(), Matrix::SYMMETRIC);
  for(UInt i=0; i<gravityfield.size(); i++)
    gravityfield.at(i)->variance(time, point, kernel, D);
  return D;
}

/***********************************************/

Double Gravityfield::variance(const Time &time, const Vector3d &point, const Kernel &kernel) const
{
  Double sigma2 = 0;
  for(UInt i=0; i<gravityfield.size(); i++)
    sigma2 += gravityfield.at(i)->variance(time, point, kernel);
  return sigma2;
}

/***********************************************/

Double Gravityfield::covariance(const Time &time, const Vector3d &point1, const Vector3d &point2, const Kernel &kernel) const
{
  Double sigma2 = 0;
  for(UInt i=0; i<gravityfield.size(); i++)
    sigma2 += gravityfield.at(i)->covariance(time, point1, point2, kernel);
  return sigma2;
}

/***********************************************/
/***********************************************/

Matrix GravityfieldBase::deformationMatrix(const std::vector<Vector3d> &point, const std::vector<Double> &gravity,
                                           const Vector &hn, const Vector &ln, Double GM, Double R, UInt maxDegree)
{
  try
  {
    Matrix A(3*point.size(), (maxDegree+1)*(maxDegree+1));

    for(UInt k=0; k<point.size(); k++)
    {
      Vector3d up = normalize(point.at(k));

      Matrix Cnm, Snm;
      SphericalHarmonics::CnmSnm(1/R * point.at(k), maxDegree+1, Cnm, Snm);

      // 0. order
      for(UInt n=0; n<=maxDegree; n++)
      {
        Double wm0 = sqrt((n+1.)*(n+1.));
        Double wp1 = sqrt((n+1.)*(n+2.)) / sqrt(2.0);
        Double Cm0 = wm0*Cnm(n+1,0);
        Double Cp1 = wp1*Cnm(n+1,1); Double Sp1 = wp1*Snm(n+1,1);

        Double   Vn     = GM/R * Cnm(n,0);
        Vector3d gradVn = GM/(2*R) * sqrt((2*n+1.)/(2*n+3.)) * Vector3d(-2*Cp1, -2*Sp1, -2*Cm0);


        Vector3d disp = (hn(n)/gravity.at(k)*Vn) * up // vertical
                      + (ln(n)/gravity.at(k)) * (gradVn-inner(gradVn,up)*up); // horizontal

        A(3*k+0, n*n) = disp.x();
        A(3*k+1, n*n) = disp.y();
        A(3*k+2, n*n) = disp.z();
      }

      // other orders
      for(UInt m=1; m<=maxDegree; m++)
        for(UInt n=m; n<=maxDegree; n++)
        {
          Double wm1 = sqrt((n-m+1.)*(n-m+2.)) * ((m==1) ? sqrt(2.0) : 1.0);
          Double wm0 = sqrt((n-m+1.)*(n+m+1.));
          Double wp1 = sqrt((n+m+1.)*(n+m+2.));
          Double Cm1 = wm1*Cnm(n+1,m-1);  Double Sm1 = wm1*Snm(n+1,m-1);
          Double Cm0 = wm0*Cnm(n+1,m  );  Double Sm0 = wm0*Snm(n+1,m  );
          Double Cp1 = wp1*Cnm(n+1,m+1);  Double Sp1 = wp1*Snm(n+1,m+1);

          Double   Vn     = GM/R * Cnm(n,m);
          Vector3d gradVn = GM/(2*R) * sqrt((2*n+1.)/(2*n+3.)) * Vector3d(Cm1-Cp1, -Sm1-Sp1, -2*Cm0);

          Vector3d disp = (hn(n)/gravity.at(k)*Vn) * up // vertical
                        + (ln(n)/gravity.at(k)) * (gradVn-inner(gradVn,up)*up); // horizontal

          A(3*k+0, n*n+2*m-1) = disp.x();
          A(3*k+1, n*n+2*m-1) = disp.y();
          A(3*k+2, n*n+2*m-1) = disp.z();

          Vn     = GM/R * Snm(n,m);
          gradVn = GM/(2*R) * sqrt((2*n+1.)/(2*n+3.)) * Vector3d(Sm1-Sp1, Cm1+Cp1, -2*Sm0);

          disp = (hn(n)/gravity.at(k)*Vn) * up // vertical
               + (ln(n)/gravity.at(k)) * (gradVn-inner(gradVn,up)*up); // horizontal

          A(3*k+0, n*n+2*m) = disp.x();
          A(3*k+1, n*n+2*m) = disp.y();
          A(3*k+2, n*n+2*m) = disp.z();
        }
    } // for(k=point)

    return A;
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

// Default implementation
Double GravityfieldBase::field(const Time &time, const Vector3d &point, const Kernel &kernel) const
{
  try
  {
    return kernel.inverseKernel(time, point, *this);
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

// Default implementation
Matrix GravityfieldBase::sphericalHarmonicsCovariance(const Time &time, UInt maxDegree, UInt minDegree, Double GM, Double R) const
{
  // only diagonal matrix
  return sphericalHarmonics(time, maxDegree, minDegree, GM, R).sigma2x();
}

/***********************************************/

// Default implementation
Double GravityfieldBase::variance(const Time &time, const Vector3d &point, const Kernel &kernel) const
{
  Matrix D(1, Matrix::SYMMETRIC);
  variance(time, {point}, kernel, D);
  return D(0,0);
}

/***********************************************/

// Default implementation
Double GravityfieldBase::covariance(const Time &time, const Vector3d &point1, const Vector3d &point2, const Kernel &kernel) const
{
  Matrix D(2, Matrix::SYMMETRIC, Matrix::UPPER);
  variance(time, {point1, point2}, kernel, D);
  return D(0,1);
}

/***********************************************/