1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
/***********************************************/
/**
* @file gravityfieldFilter.cpp
*
* @brief Filtered spherical harmonics.
* @see Gravityfield
*
* @author Torsten Mayer-Guerr
* @date 2020-07-20
*
*/
/***********************************************/
#include "base/import.h"
#include "base/sphericalHarmonics.h"
#include "config/config.h"
#include "classes/kernel/kernel.h"
#include "classes/gravityfield/gravityfield.h"
#include "classes/gravityfield/gravityfieldFilter.h"
/***********************************************/
GravityfieldFilter::GravityfieldFilter(Config &config)
{
try
{
readConfig(config, "gravityfield", gravityfield, Config::MUSTSET, "", "");
readConfig(config, "filter", filter, Config::MUSTSET, "", "");
if(isCreateSchema(config)) return;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Double GravityfieldFilter::potential(const Time &time, const Vector3d &point) const
{
return sphericalHarmonics(time).potential(point);
}
/***********************************************/
Double GravityfieldFilter::radialGradient(const Time &time, const Vector3d &point) const
{
return sphericalHarmonics(time).radialGradient(point);
}
/***********************************************/
Double GravityfieldFilter::field(const Time &time, const Vector3d &point, const Kernel &kernel) const
{
SphericalHarmonics harmonics = sphericalHarmonics(time);
return inner(kernel.inverseCoefficients(point, harmonics.maxDegree(), harmonics.isInterior()), harmonics.Yn(point, harmonics.maxDegree()));
}
/***********************************************/
Vector3d GravityfieldFilter::gravity(const Time &time, const Vector3d &point) const
{
return sphericalHarmonics(time).gravity(point);
}
/***********************************************/
Tensor3d GravityfieldFilter::gravityGradient(const Time &time, const Vector3d &point) const
{
return sphericalHarmonics(time).gravityGradient(point);
}
/***********************************************/
Vector3d GravityfieldFilter::deformation(const Time &time, const Vector3d &point, Double gravity, const Vector &hn, const Vector &ln) const
{
return sphericalHarmonics(time).deformation(point, gravity, hn, ln);
}
/***********************************************/
void GravityfieldFilter::deformation(const std::vector<Time> &time, const std::vector<Vector3d> &point, const std::vector<Double> &gravity,
const Vector &hn, const Vector &ln, std::vector<std::vector<Vector3d>> &disp) const
{
for(UInt i=0; i<time.size(); i++)
{
SphericalHarmonics harmonics = sphericalHarmonics(time.at(i));
for(UInt k=0; k<point.size(); k++)
disp.at(k).at(i) += harmonics.deformation(point.at(k), gravity.at(k), hn, ln);
}
}
/***********************************************/
SphericalHarmonics GravityfieldFilter::sphericalHarmonics(const Time &time, UInt maxDegree, UInt minDegree, Double GM, Double R) const
{
return filter->filter(gravityfield->sphericalHarmonics(time, maxDegree, minDegree, GM, R));
}
/***********************************************/
void GravityfieldFilter::variance(const Time &time, const std::vector<Vector3d> &point, const Kernel &kernel, Matrix &D) const
{
try
{
SphericalHarmonics harmonics = sphericalHarmonics(time);
if(!harmonics.sigma2cnm().size())
return;
UInt maxDegree = harmonics.maxDegree();
Double GM = harmonics.GM();
Double R = harmonics.R();
Matrix Cnm_i, Snm_i, Cnm_k, Snm_k;
Matrix sigma2cnm = harmonics.sigma2cnm();
Matrix sigma2snm = harmonics.sigma2snm();
for(UInt i=0; i<point.size(); i++)
{
Vector coeff_i = GM/R * kernel.inverseCoefficients(point.at(i), maxDegree, harmonics.isInterior());
SphericalHarmonics::CnmSnm(1/R * point.at(i), maxDegree, Cnm_i, Snm_i, harmonics.isInterior());
for(UInt k=i; k<point.size(); k++)
{
Vector coeff_k = GM/R * kernel.inverseCoefficients(point.at(k), maxDegree, harmonics.isInterior());
SphericalHarmonics::CnmSnm(1/R * point.at(k), maxDegree, Cnm_k, Snm_k, harmonics.isInterior());
for(UInt n=0; n<=maxDegree; n++)
for(UInt m=0; m<=n; m++)
D(i,k) += coeff_i(n) * Cnm_i(n,m) * sigma2cnm(n,m) * Cnm_k(n,m) * coeff_k(n)
+ coeff_i(n) * Snm_i(n,m) * sigma2snm(n,m) * Snm_k(n,m) * coeff_k(n);
}
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Double GravityfieldFilter::variance(const Time &time, const Vector3d &point, const Kernel &kernel) const
{
try
{
SphericalHarmonics harmonics = sphericalHarmonics(time);
if(!harmonics.sigma2cnm().size())
return 0.0;
UInt maxDegree = harmonics.maxDegree();
Double GM = harmonics.GM();
Double R = harmonics.R();
Vector coeff = GM/R * kernel.inverseCoefficients(point, maxDegree, harmonics.isInterior());
Matrix Cnm, Snm;
SphericalHarmonics::CnmSnm(1/R * point, maxDegree, Cnm, Snm, harmonics.isInterior());
Double sigma2 = 0;
const Matrix sigma2cnm = harmonics.sigma2cnm();
const Matrix sigma2snm = harmonics.sigma2snm();
for(UInt n=0; n<=maxDegree; n++)
for(UInt m=0; m<=n; m++)
sigma2 += std::pow(coeff(n)*Cnm(n,m),2) * sigma2cnm(n,m)
+ std::pow(coeff(n)*Snm(n,m),2) * sigma2snm(n,m);
return sigma2;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|