1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
/***********************************************/
/**
* @file gravityfieldPotentialCoefficients.cpp
*
* @brief Potential coefficients (SphericalHarmonics).
* All classes fo this type are added together before evaluation to speed up the computation.
* @see Gravityfield
*
* @author Torsten Mayer-Guerr
* @date 2001-08-25
*
*/
/***********************************************/
#include "base/import.h"
#include "base/sphericalHarmonics.h"
#include "config/config.h"
#include "files/fileSphericalHarmonics.h"
#include "classes/kernel/kernel.h"
#include "classes/gravityfield/gravityfield.h"
#include "classes/gravityfield/gravityfieldPotentialCoefficients.h"
/***********************************************/
GravityfieldPotentialCoefficients::GravityfieldPotentialCoefficients(Config &config)
{
try
{
FileName fileName;
Double factor;
UInt minDegree, maxDegree = INFINITYDEGREE;
Bool zeroVariance;
readConfig(config, "inputfilePotentialCoefficients", fileName, Config::MUSTSET, "{groopsDataDir}/potential/", "");
readConfig(config, "minDegree", minDegree, Config::DEFAULT, "0", "");
readConfig(config, "maxDegree", maxDegree, Config::OPTIONAL, "", "");
readConfig(config, "factor", factor, Config::DEFAULT, "1.0", "the result is multiplied by this factor, set -1 to subtract the field");
readConfig(config, "setSigmasToZero", zeroVariance, Config::DEFAULT, "0", "set variances to zero, should be used by adding back reference fields");
if(isCreateSchema(config)) return;
readFileSphericalHarmonics(fileName, harmonics);
if(zeroVariance)
harmonics.sigma2cnm() = harmonics.sigma2snm() = Matrix();
harmonics = factor * harmonics.get(maxDegree, minDegree);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Double GravityfieldPotentialCoefficients::potential(const Time &/*time*/, const Vector3d &point) const
{
return harmonics.potential(point);
}
/***********************************************/
Double GravityfieldPotentialCoefficients::radialGradient(const Time &/*time*/, const Vector3d &point) const
{
return harmonics.radialGradient(point);
}
/***********************************************/
Double GravityfieldPotentialCoefficients::field(const Time &/*time*/, const Vector3d &point, const Kernel &kernel) const
{
// Convolution with kernel
return inner(kernel.inverseCoefficients(point, harmonics.maxDegree(), harmonics.isInterior()), harmonics.Yn(point, harmonics.maxDegree()));
}
/***********************************************/
Vector3d GravityfieldPotentialCoefficients::gravity(const Time &/*time*/, const Vector3d &point) const
{
return harmonics.gravity(point);
}
/***********************************************/
Tensor3d GravityfieldPotentialCoefficients::gravityGradient(const Time &/*time*/, const Vector3d &point) const
{
return harmonics.gravityGradient(point);
}
/***********************************************/
Vector3d GravityfieldPotentialCoefficients::deformation(const Time &/*time*/, const Vector3d &point, Double gravity, const Vector &hn, const Vector &ln) const
{
return harmonics.deformation(point, gravity, hn, ln);
}
/***********************************************/
void GravityfieldPotentialCoefficients::deformation(const std::vector<Time> &time, const std::vector<Vector3d> &point, const std::vector<Double> &gravity,
const Vector &hn, const Vector &ln, std::vector<std::vector<Vector3d>> &disp) const
{
for(UInt k=0; k<point.size(); k++)
{
Vector3d d = harmonics.deformation(point.at(k), gravity.at(k), hn, ln);
for(UInt i=0; i<time.size(); i++)
disp.at(k).at(i) += d;
}
}
/***********************************************/
void GravityfieldPotentialCoefficients::variance(const Time &/*time*/, const std::vector<Vector3d> &point, const Kernel &kernel, Matrix &D) const
{
try
{
if(!harmonics.sigma2cnm().size())
return;
UInt maxDegree = harmonics.maxDegree();
Double GM = harmonics.GM();
Double R = harmonics.R();
Matrix Cnm_i, Snm_i, Cnm_k, Snm_k;
Matrix sigma2cnm = harmonics.sigma2cnm();
Matrix sigma2snm = harmonics.sigma2snm();
for(UInt i=0; i<point.size(); i++)
{
Vector coeff_i = GM/R * kernel.inverseCoefficients(point.at(i), maxDegree, harmonics.isInterior());
SphericalHarmonics::CnmSnm(1/R * point.at(i), maxDegree, Cnm_i, Snm_i, harmonics.isInterior());
for(UInt k=i; k<point.size(); k++)
{
Vector coeff_k = GM/R * kernel.inverseCoefficients(point.at(k), maxDegree, harmonics.isInterior());
SphericalHarmonics::CnmSnm(1/R * point.at(k), maxDegree, Cnm_k, Snm_k, harmonics.isInterior());
for(UInt n=0; n<=maxDegree; n++)
for(UInt m=0; m<=n; m++)
D(i,k) += coeff_i(n) * Cnm_i(n,m) * sigma2cnm(n,m) * Cnm_k(n,m) * coeff_k(n)
+ coeff_i(n) * Snm_i(n,m) * sigma2snm(n,m) * Snm_k(n,m) * coeff_k(n);
}
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Double GravityfieldPotentialCoefficients::variance(const Time &/*time*/, const Vector3d &point, const Kernel &kernel) const
{
try
{
if(!harmonics.sigma2cnm().size())
return 0.0;
UInt maxDegree = harmonics.maxDegree();
Double GM = harmonics.GM();
Double R = harmonics.R();
Vector coeff = GM/R * kernel.inverseCoefficients(point, maxDegree, harmonics.isInterior());
Matrix Cnm, Snm;
SphericalHarmonics::CnmSnm(1/R * point, maxDegree, Cnm, Snm, harmonics.isInterior());
Double sigma2 = 0;
const Matrix sigma2cnm = harmonics.sigma2cnm();
const Matrix sigma2snm = harmonics.sigma2snm();
for(UInt n=0; n<=maxDegree; n++)
for(UInt m=0; m<=n; m++)
sigma2 += pow(coeff(n)*Cnm(n,m),2) * sigma2cnm(n,m)
+ pow(coeff(n)*Snm(n,m),2) * sigma2snm(n,m);
return sigma2;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
SphericalHarmonics GravityfieldPotentialCoefficients::sphericalHarmonics(const Time &/*time*/, UInt maxDegree, UInt minDegree, Double GM, Double R) const
{
try
{
return harmonics.get(maxDegree, minDegree, GM, R);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|