File: gravityfieldPotentialCoefficients.cpp

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (193 lines) | stat: -rw-r--r-- 6,501 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/***********************************************/
/**
* @file gravityfieldPotentialCoefficients.cpp
*
* @brief Potential coefficients (SphericalHarmonics).
* All classes fo this type are added together before evaluation to speed up the computation.
* @see Gravityfield
*
* @author Torsten Mayer-Guerr
* @date 2001-08-25
*
*/
/***********************************************/

#include "base/import.h"
#include "base/sphericalHarmonics.h"
#include "config/config.h"
#include "files/fileSphericalHarmonics.h"
#include "classes/kernel/kernel.h"
#include "classes/gravityfield/gravityfield.h"
#include "classes/gravityfield/gravityfieldPotentialCoefficients.h"

/***********************************************/

GravityfieldPotentialCoefficients::GravityfieldPotentialCoefficients(Config &config)
{
  try
  {
    FileName fileName;
    Double   factor;
    UInt     minDegree, maxDegree = INFINITYDEGREE;
    Bool     zeroVariance;

    readConfig(config, "inputfilePotentialCoefficients", fileName, Config::MUSTSET, "{groopsDataDir}/potential/", "");
    readConfig(config, "minDegree",       minDegree,    Config::DEFAULT,  "0",   "");
    readConfig(config, "maxDegree",       maxDegree,    Config::OPTIONAL, "",    "");
    readConfig(config, "factor",          factor,       Config::DEFAULT,  "1.0", "the result is multiplied by this factor, set -1 to subtract the field");
    readConfig(config, "setSigmasToZero", zeroVariance, Config::DEFAULT,  "0",   "set variances to zero, should be used by adding back reference fields");
    if(isCreateSchema(config)) return;

    readFileSphericalHarmonics(fileName, harmonics);
    if(zeroVariance)
      harmonics.sigma2cnm() = harmonics.sigma2snm() = Matrix();
    harmonics = factor * harmonics.get(maxDegree, minDegree);
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

Double GravityfieldPotentialCoefficients::potential(const Time &/*time*/, const Vector3d &point) const
{
  return harmonics.potential(point);
}

/***********************************************/

Double GravityfieldPotentialCoefficients::radialGradient(const Time &/*time*/, const Vector3d &point) const
{
  return harmonics.radialGradient(point);
}

/***********************************************/

Double GravityfieldPotentialCoefficients::field(const Time &/*time*/, const Vector3d &point, const Kernel &kernel) const
{
  // Convolution with kernel
  return inner(kernel.inverseCoefficients(point, harmonics.maxDegree(), harmonics.isInterior()), harmonics.Yn(point, harmonics.maxDegree()));
}

/***********************************************/

Vector3d GravityfieldPotentialCoefficients::gravity(const Time &/*time*/, const Vector3d &point) const
{
  return harmonics.gravity(point);
}

/***********************************************/

Tensor3d GravityfieldPotentialCoefficients::gravityGradient(const Time &/*time*/, const Vector3d &point) const
{
  return harmonics.gravityGradient(point);
}

/***********************************************/

Vector3d GravityfieldPotentialCoefficients::deformation(const Time &/*time*/, const Vector3d &point, Double gravity, const Vector &hn, const Vector &ln) const
{
  return harmonics.deformation(point, gravity, hn, ln);
}

/***********************************************/

void GravityfieldPotentialCoefficients::deformation(const std::vector<Time> &time, const std::vector<Vector3d> &point, const std::vector<Double> &gravity,
                                                         const Vector &hn, const Vector &ln, std::vector<std::vector<Vector3d>> &disp) const
{
  for(UInt k=0; k<point.size(); k++)
  {
    Vector3d d = harmonics.deformation(point.at(k), gravity.at(k), hn, ln);
    for(UInt i=0; i<time.size(); i++)
      disp.at(k).at(i) += d;
  }
}

/***********************************************/

void GravityfieldPotentialCoefficients::variance(const Time &/*time*/, const std::vector<Vector3d> &point, const Kernel &kernel, Matrix &D) const
{
  try
  {
    if(!harmonics.sigma2cnm().size())
      return;

    UInt   maxDegree = harmonics.maxDegree();
    Double GM = harmonics.GM();
    Double R  = harmonics.R();

    Matrix Cnm_i, Snm_i, Cnm_k, Snm_k;
    Matrix sigma2cnm = harmonics.sigma2cnm();
    Matrix sigma2snm = harmonics.sigma2snm();

    for(UInt i=0; i<point.size(); i++)
    {
      Vector coeff_i = GM/R * kernel.inverseCoefficients(point.at(i), maxDegree, harmonics.isInterior());
      SphericalHarmonics::CnmSnm(1/R * point.at(i), maxDegree, Cnm_i, Snm_i, harmonics.isInterior());

      for(UInt k=i; k<point.size(); k++)
      {
        Vector coeff_k = GM/R * kernel.inverseCoefficients(point.at(k), maxDegree, harmonics.isInterior());
        SphericalHarmonics::CnmSnm(1/R * point.at(k), maxDegree, Cnm_k, Snm_k, harmonics.isInterior());

        for(UInt n=0; n<=maxDegree; n++)
          for(UInt m=0; m<=n; m++)
            D(i,k) += coeff_i(n) * Cnm_i(n,m) * sigma2cnm(n,m) * Cnm_k(n,m) * coeff_k(n)
                   +  coeff_i(n) * Snm_i(n,m) * sigma2snm(n,m) * Snm_k(n,m) * coeff_k(n);
      }
    }
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

Double GravityfieldPotentialCoefficients::variance(const Time &/*time*/, const Vector3d &point, const Kernel &kernel) const
{
  try
  {
    if(!harmonics.sigma2cnm().size())
      return 0.0;

    UInt   maxDegree = harmonics.maxDegree();
    Double GM = harmonics.GM();
    Double R  = harmonics.R();
    Vector coeff = GM/R * kernel.inverseCoefficients(point, maxDegree, harmonics.isInterior());
    Matrix Cnm, Snm;
    SphericalHarmonics::CnmSnm(1/R * point, maxDegree, Cnm, Snm, harmonics.isInterior());

    Double sigma2 = 0;
    const Matrix sigma2cnm = harmonics.sigma2cnm();
    const Matrix sigma2snm = harmonics.sigma2snm();
    for(UInt n=0; n<=maxDegree; n++)
      for(UInt m=0; m<=n; m++)
        sigma2  += pow(coeff(n)*Cnm(n,m),2) * sigma2cnm(n,m)
                +  pow(coeff(n)*Snm(n,m),2) * sigma2snm(n,m);
    return sigma2;
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

SphericalHarmonics GravityfieldPotentialCoefficients::sphericalHarmonics(const Time &/*time*/, UInt maxDegree, UInt minDegree, Double GM, Double R) const
{
  try
  {
    return harmonics.get(maxDegree, minDegree, GM, R);
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/