File: gravityfieldTimeSplines.cpp

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (231 lines) | stat: -rw-r--r-- 7,249 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/***********************************************/
/**
* @file gravityfieldTimeSplines.cpp
*
* @brief TimeSplines.
* @see Gravityfield
*
* @author Torsten Mayer-Guerr
* @date 2004-04-14
*
*/
/***********************************************/

#include "base/import.h"
#include "base/sphericalHarmonics.h"
#include "config/config.h"
#include "files/fileTimeSplinesGravityfield.h"
#include "classes/kernel/kernel.h"
#include "classes/gravityfield/gravityfield.h"
#include "classes/gravityfield/gravityfieldTimeSplines.h"

/***********************************************/

GravityfieldTimeSplines::GravityfieldTimeSplines(Config &config)
{
  try
  {
    maxDegree = INFINITYDEGREE;
    FileName fileName, covName;

    readConfig(config, "inputfileTimeSplinesGravityfield", fileName,  Config::MUSTSET,  "{groopsDataDir}/", "");
    readConfig(config, "inputfileTimeSplinesCovariance",   covName,   Config::OPTIONAL, "",    "");
    readConfig(config, "minDegree",                        minDegree, Config::DEFAULT,  "0",   "");
    readConfig(config, "maxDegree",                        maxDegree, Config::OPTIONAL, "",    "");
    readConfig(config, "factor",                           factor,    Config::DEFAULT,  "1.0", "the result is multiplied by this factor, set -1 to subtract the field");
    if(isCreateSchema(config)) return;

    splinesFile.open(fileName, maxDegree, minDegree);
    hasCovariance = !covName.empty();
    if(hasCovariance)
      covarianceFile.open(covName, maxDegree, minDegree);
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

Double GravityfieldTimeSplines::potential(const Time &time, const Vector3d &point) const
{
  return splinesFile.sphericalHarmonics(time, factor).potential(point);
}

/***********************************************/

Double GravityfieldTimeSplines::radialGradient(const Time &time, const Vector3d &point) const
{
  return splinesFile.sphericalHarmonics(time, factor).radialGradient(point);
}

/***********************************************/

Double GravityfieldTimeSplines::field(const Time &time, const Vector3d &point, const Kernel &kernel) const
{
  SphericalHarmonics harm = splinesFile.sphericalHarmonics(time, factor);
  // Convolution with kernel
  return inner(kernel.inverseCoefficients(point, harm.maxDegree()), harm.Yn(point, harm.maxDegree()));
}

/***********************************************/

Vector3d GravityfieldTimeSplines::gravity(const Time &time, const Vector3d &point) const
{
  return splinesFile.sphericalHarmonics(time, factor).gravity(point);
}

/***********************************************/

Tensor3d GravityfieldTimeSplines::gravityGradient(const Time &time, const Vector3d &point) const
{
  return splinesFile.sphericalHarmonics(time, factor).gravityGradient(point);
}

/***********************************************/

Vector3d GravityfieldTimeSplines::deformation(const Time &time, const Vector3d &point, Double gravity, const Vector &hn, const Vector &ln) const
{
  return splinesFile.sphericalHarmonics(time, factor).deformation(point, gravity, hn, ln);
}

/***********************************************/

void GravityfieldTimeSplines::deformation(const std::vector<Time> &time, const std::vector<Vector3d> &point, const std::vector<Double> &gravity,
                                          const Vector &hn, const Vector &ln, std::vector<std::vector<Vector3d>> &disp) const
{
  if((time.size()==0) || (point.size()==0))
    return;

  Matrix A;
  for(UInt i=0; i<time.size(); i++)
  {
    SphericalHarmonics harm = splinesFile.sphericalHarmonics(time.at(i), factor);
    Vector anm = harm.x();

    if(A.columns() < anm.rows())
      A = deformationMatrix(point, gravity, hn, ln, harm.GM(), harm.R(), harm.maxDegree());

    Vector x = A.column(0, anm.rows())*anm;
    for(UInt k=0; k<point.size(); k++)
    {
      disp.at(k).at(i).x() += x(3*k+0);
      disp.at(k).at(i).y() += x(3*k+1);
      disp.at(k).at(i).z() += x(3*k+2);
    }
  }
}

/***********************************************/

SphericalHarmonics GravityfieldTimeSplines::sphericalHarmonics(const Time &time, UInt maxDegree, UInt minDegree, Double GM, Double R) const
{
  try
  {
    if(time==Time())
      return SphericalHarmonics();
    SphericalHarmonics harm = splinesFile.sphericalHarmonics(time, factor).get(maxDegree, std::max(this->minDegree,minDegree), GM, R);
    if(!hasCovariance)
      return harm;

    Matrix C = covarianceFile.covariance(time, factor, maxDegree, std::max(this->minDegree,minDegree), harm.GM(), harm.R());
    if(C.size() == 0)
      return harm;
    Vector sigma2;
    if(C.getType() == Matrix::SYMMETRIC)
    {
      sigma2 = Vector(C.rows());
      for(UInt i=0; i<C.rows(); i++)
        sigma2(i) = C(i,i);
    }
    else
      sigma2 = C;

    Matrix sigma2cnm(harm.maxDegree()+1, Matrix::TRIANGULAR, Matrix::LOWER);
    Matrix sigma2snm(harm.maxDegree()+1, Matrix::TRIANGULAR, Matrix::LOWER);
    UInt idx = 0;
    for(UInt n=0; n<=harm.maxDegree(); n++)
    {
      sigma2cnm(n,0) = sigma2(idx++);
      for(UInt m=1; m<=n; m++)
      {
        sigma2cnm(n,m) = sigma2(idx++);
        sigma2snm(n,m) = sigma2(idx++);
      }
    }

    return SphericalHarmonics(harm.GM(), harm.R(), harm.cnm(), harm.snm(), sigma2cnm, sigma2snm);
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

Matrix GravityfieldTimeSplines::sphericalHarmonicsCovariance(const Time &time, UInt maxDegree, UInt minDegree, Double GM, Double R) const
{
  try
  {
    if((!hasCovariance) || (time==Time()))
      return Matrix();

    return covarianceFile.covariance(time, factor, maxDegree, std::max(this->minDegree,minDegree), GM, R);
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

void GravityfieldTimeSplines::variance(const Time &time, const std::vector<Vector3d> &point, const Kernel &kernel, Matrix &D) const
{
  try
  {
    if((!hasCovariance) || (time==Time()))
      return;

    Double GM        = covarianceFile.GM();
    Double R         = covarianceFile.R();
    Matrix C         = covarianceFile.covariance(time, 1.);
    UInt   maxDegree = covarianceFile.maxDegree();

    // A = linear function from spherical harmonics to point values
    Matrix A(point.size(), C.rows());
    for(UInt k=0; k<point.size(); k++)
    {
      Matrix Cnm, Snm;
      SphericalHarmonics::CnmSnm(1/R * point.at(k), maxDegree, Cnm, Snm);
      Vector kn = kernel.inverseCoefficients(point.at(k), maxDegree);
      UInt idx = 0;
      for(UInt n=0; idx<A.columns(); n++)
      {
        A(k,idx++) = factor * kn(n) * GM/R * Cnm(n,0);
        for(UInt m=1; m<=n; m++)
        {
          A(k,idx++) = factor * kn(n) * GM/R * Cnm(n,m);
          A(k,idx++) = factor * kn(n) * GM/R * Snm(n,m);
        }
      }
    }

    if(C.getType() == Matrix::SYMMETRIC) // full covariance matrix?
      D += A * C * A.trans();
    else // only variances
    {
      for(UInt i=0; i<A.columns(); i++)
        A.column(i) *= sqrt(C(i,0));
      rankKUpdate(1., A.trans(), D);
    }
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/