1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/***********************************************/
/**
* @file gravityfieldTimeSplines.cpp
*
* @brief TimeSplines.
* @see Gravityfield
*
* @author Torsten Mayer-Guerr
* @date 2004-04-14
*
*/
/***********************************************/
#include "base/import.h"
#include "base/sphericalHarmonics.h"
#include "config/config.h"
#include "files/fileTimeSplinesGravityfield.h"
#include "classes/kernel/kernel.h"
#include "classes/gravityfield/gravityfield.h"
#include "classes/gravityfield/gravityfieldTimeSplines.h"
/***********************************************/
GravityfieldTimeSplines::GravityfieldTimeSplines(Config &config)
{
try
{
maxDegree = INFINITYDEGREE;
FileName fileName, covName;
readConfig(config, "inputfileTimeSplinesGravityfield", fileName, Config::MUSTSET, "{groopsDataDir}/", "");
readConfig(config, "inputfileTimeSplinesCovariance", covName, Config::OPTIONAL, "", "");
readConfig(config, "minDegree", minDegree, Config::DEFAULT, "0", "");
readConfig(config, "maxDegree", maxDegree, Config::OPTIONAL, "", "");
readConfig(config, "factor", factor, Config::DEFAULT, "1.0", "the result is multiplied by this factor, set -1 to subtract the field");
if(isCreateSchema(config)) return;
splinesFile.open(fileName, maxDegree, minDegree);
hasCovariance = !covName.empty();
if(hasCovariance)
covarianceFile.open(covName, maxDegree, minDegree);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Double GravityfieldTimeSplines::potential(const Time &time, const Vector3d &point) const
{
return splinesFile.sphericalHarmonics(time, factor).potential(point);
}
/***********************************************/
Double GravityfieldTimeSplines::radialGradient(const Time &time, const Vector3d &point) const
{
return splinesFile.sphericalHarmonics(time, factor).radialGradient(point);
}
/***********************************************/
Double GravityfieldTimeSplines::field(const Time &time, const Vector3d &point, const Kernel &kernel) const
{
SphericalHarmonics harm = splinesFile.sphericalHarmonics(time, factor);
// Convolution with kernel
return inner(kernel.inverseCoefficients(point, harm.maxDegree()), harm.Yn(point, harm.maxDegree()));
}
/***********************************************/
Vector3d GravityfieldTimeSplines::gravity(const Time &time, const Vector3d &point) const
{
return splinesFile.sphericalHarmonics(time, factor).gravity(point);
}
/***********************************************/
Tensor3d GravityfieldTimeSplines::gravityGradient(const Time &time, const Vector3d &point) const
{
return splinesFile.sphericalHarmonics(time, factor).gravityGradient(point);
}
/***********************************************/
Vector3d GravityfieldTimeSplines::deformation(const Time &time, const Vector3d &point, Double gravity, const Vector &hn, const Vector &ln) const
{
return splinesFile.sphericalHarmonics(time, factor).deformation(point, gravity, hn, ln);
}
/***********************************************/
void GravityfieldTimeSplines::deformation(const std::vector<Time> &time, const std::vector<Vector3d> &point, const std::vector<Double> &gravity,
const Vector &hn, const Vector &ln, std::vector<std::vector<Vector3d>> &disp) const
{
if((time.size()==0) || (point.size()==0))
return;
Matrix A;
for(UInt i=0; i<time.size(); i++)
{
SphericalHarmonics harm = splinesFile.sphericalHarmonics(time.at(i), factor);
Vector anm = harm.x();
if(A.columns() < anm.rows())
A = deformationMatrix(point, gravity, hn, ln, harm.GM(), harm.R(), harm.maxDegree());
Vector x = A.column(0, anm.rows())*anm;
for(UInt k=0; k<point.size(); k++)
{
disp.at(k).at(i).x() += x(3*k+0);
disp.at(k).at(i).y() += x(3*k+1);
disp.at(k).at(i).z() += x(3*k+2);
}
}
}
/***********************************************/
SphericalHarmonics GravityfieldTimeSplines::sphericalHarmonics(const Time &time, UInt maxDegree, UInt minDegree, Double GM, Double R) const
{
try
{
if(time==Time())
return SphericalHarmonics();
SphericalHarmonics harm = splinesFile.sphericalHarmonics(time, factor).get(maxDegree, std::max(this->minDegree,minDegree), GM, R);
if(!hasCovariance)
return harm;
Matrix C = covarianceFile.covariance(time, factor, maxDegree, std::max(this->minDegree,minDegree), harm.GM(), harm.R());
if(C.size() == 0)
return harm;
Vector sigma2;
if(C.getType() == Matrix::SYMMETRIC)
{
sigma2 = Vector(C.rows());
for(UInt i=0; i<C.rows(); i++)
sigma2(i) = C(i,i);
}
else
sigma2 = C;
Matrix sigma2cnm(harm.maxDegree()+1, Matrix::TRIANGULAR, Matrix::LOWER);
Matrix sigma2snm(harm.maxDegree()+1, Matrix::TRIANGULAR, Matrix::LOWER);
UInt idx = 0;
for(UInt n=0; n<=harm.maxDegree(); n++)
{
sigma2cnm(n,0) = sigma2(idx++);
for(UInt m=1; m<=n; m++)
{
sigma2cnm(n,m) = sigma2(idx++);
sigma2snm(n,m) = sigma2(idx++);
}
}
return SphericalHarmonics(harm.GM(), harm.R(), harm.cnm(), harm.snm(), sigma2cnm, sigma2snm);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Matrix GravityfieldTimeSplines::sphericalHarmonicsCovariance(const Time &time, UInt maxDegree, UInt minDegree, Double GM, Double R) const
{
try
{
if((!hasCovariance) || (time==Time()))
return Matrix();
return covarianceFile.covariance(time, factor, maxDegree, std::max(this->minDegree,minDegree), GM, R);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void GravityfieldTimeSplines::variance(const Time &time, const std::vector<Vector3d> &point, const Kernel &kernel, Matrix &D) const
{
try
{
if((!hasCovariance) || (time==Time()))
return;
Double GM = covarianceFile.GM();
Double R = covarianceFile.R();
Matrix C = covarianceFile.covariance(time, 1.);
UInt maxDegree = covarianceFile.maxDegree();
// A = linear function from spherical harmonics to point values
Matrix A(point.size(), C.rows());
for(UInt k=0; k<point.size(); k++)
{
Matrix Cnm, Snm;
SphericalHarmonics::CnmSnm(1/R * point.at(k), maxDegree, Cnm, Snm);
Vector kn = kernel.inverseCoefficients(point.at(k), maxDegree);
UInt idx = 0;
for(UInt n=0; idx<A.columns(); n++)
{
A(k,idx++) = factor * kn(n) * GM/R * Cnm(n,0);
for(UInt m=1; m<=n; m++)
{
A(k,idx++) = factor * kn(n) * GM/R * Cnm(n,m);
A(k,idx++) = factor * kn(n) * GM/R * Snm(n,m);
}
}
}
if(C.getType() == Matrix::SYMMETRIC) // full covariance matrix?
D += A * C * A.trans();
else // only variances
{
for(UInt i=0; i<A.columns(); i++)
A.column(i) *= sqrt(C(i,0));
rankKUpdate(1., A.trans(), D);
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|