File: gravityfieldTopography.cpp

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (507 lines) | stat: -rw-r--r-- 18,640 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
/***********************************************/
/**
* @file gravityfieldTopography.cpp
*
* @brief Gravity field from topographic masses.
* @see Gravityfield
*
* @author Torsten Mayer-Guerr
* @date 2013-02-10
*
*/
/***********************************************/

#include "base/import.h"
#include "base/sphericalHarmonics.h"
#include "parser/expressionParser.h"
#include "parser/dataVariables.h"
#include "parallel/parallel.h"
#include "config/config.h"
#include "inputOutput/logging.h"
#include "files/fileGriddedData.h"
#include "misc/miscGriddedData.h"
#include "classes/kernel/kernel.h"
#include "classes/gravityfield/gravityfield.h"
#include "classes/gravityfield/gravityfieldTopography.h"

/***********************************************/

GravityfieldTopography::GravityfieldTopography(Config &config)
{
  try
  {
    FileName gridName;
    ExpressionVariablePtr expressionUpper, expressionLower, expressionRho;
    cosPsiMax = 1e99;

    readConfig(config, "inputfileGridRectangular", gridName,        Config::MUSTSET,  "",      "Digital Terrain Model");
    readConfig(config, "density",                  expressionRho,   Config::DEFAULT,  "2670",  "expression [kg/m**3]");
    readConfig(config, "radialUpperBound",         expressionUpper, Config::DEFAULT,  "data0", "expression (variables 'height', 'data', 'L', 'B' and, 'area' are taken from the gridded data");
    readConfig(config, "radialLowerBound",         expressionLower, Config::DEFAULT,  "0",     "expression (variables 'height', 'data', 'L', 'B' and, 'area' are taken from the gridded data");
    readConfig(config, "distanceMin",              cosPsiMin,       Config::DEFAULT,  "0",     "[km] min. influence distance (ignore near zone)");
    readConfig(config, "distancePrism",            cosPsiPrism,     Config::DEFAULT,  "15",    "[km] max. distance for prism formular");
    readConfig(config, "distanceLine",             cosPsiLine,      Config::DEFAULT,  "100",   "[km] max. distance for radial integration");
    readConfig(config, "distanceMax",              cosPsiMax,       Config::OPTIONAL, "",      "[km] max. influence distance (ignore far zone)");
    readConfig(config, "factor",                   factor,          Config::DEFAULT,  "1.0",   "the result is multiplied by this factor, set -1 to subtract the field");
    if(isCreateSchema(config)) return;

    cosPsiMin   = std::cos(std::min(PI, 1e3/DEFAULT_R * cosPsiMin));
    cosPsiPrism = std::cos(std::min(PI, 1e3/DEFAULT_R * cosPsiPrism));
    cosPsiLine  = std::cos(std::min(PI, 1e3/DEFAULT_R * cosPsiLine));
    cosPsiMax   = std::cos(std::min(PI, 1e3/DEFAULT_R * cosPsiMax));

    // read rectangular grid
    // ---------------------
    GriddedDataRectangular grid;
    readFileGriddedData(gridName, grid);
    std::vector<Double> radius;
    grid.geocentric(lambda0, phi0, radius);
    grid.areaElements(dLambda, dPhi);
    grid.cellBorders(lambda, phi);
    for(UInt i=0; i<phi.size(); i++)
      phi.at(i) = grid.ellipsoid(Angle(0.), Angle(phi.at(i)), 0.).phi();  // geocentric

    // evaluate upper and lower height
    // -------------------------------
    VariableList varList;
    addDataVariables(grid, varList);
    expressionUpper->simplify(varList);
    expressionLower->simplify(varList);
    expressionRho  ->simplify(varList);

    rLower = Matrix(phi0.size(), lambda0.size());
    rUpper = Matrix(phi0.size(), lambda0.size());
    rho    = Matrix(phi0.size(), lambda0.size());
    for(UInt i=0; i<phi0.size(); i++)
      for(UInt k=0; k<lambda0.size(); k++)
      {
        evaluateDataVariables(grid, i, k, varList);
        rUpper(i,k) = radius.at(i) + expressionUpper->evaluate(varList);
        rLower(i,k) = radius.at(i) + expressionLower->evaluate(varList);
        rho(i,k)    = expressionRho->evaluate(varList);
      }

    // precompute sin & cos terms
    // --------------------------
    sinL.resize(lambda0.size());
    cosL.resize(lambda0.size());
    for(UInt k=0; k<lambda0.size(); k++)
    {
      sinL.at(k) = std::sin(lambda0.at(k));
      cosL.at(k) = std::cos(lambda0.at(k));
    }
    sinPhi.resize(phi0.size());
    cosPhi.resize(phi0.size());
    for(UInt i=0; i<phi0.size(); i++)
    {
      sinPhi.at(i) = std::sin(phi0.at(i));
      cosPhi.at(i) = std::cos(phi0.at(i));
    }
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

inline void GravityfieldTopography::findRectangle(const Vector3d &point, UInt &colsMin, UInt &rowsMin, UInt &colsMax, UInt &rowsMax) const
{
  try
  {
    colsMin = 0;
    rowsMin = 0;
    colsMax = lambda0.size();
    rowsMax = phi0.size();
    if(cosPsiMax < -0.999)
      return;

    const Double phi    = point.phi();
    const Double lambda = point.lambda();
    const Double deltaP = std::acos(cosPsiMax);
    const Double deltaL = deltaP/std::cos(phi);

    rowsMin = std::distance(phi0.begin(),    std::find_if(phi0.begin(),    phi0.end(),    [&](auto x){return std::fabs(x-phi)    < deltaP;}));
    colsMin = std::distance(lambda0.begin(), std::find_if(lambda0.begin(), lambda0.end(), [&](auto x){return std::fabs(x-lambda) < deltaL;}));
    rowsMax = std::distance(std::find_if(phi0.rbegin(),    phi0.rend(),    [&](auto x){return std::fabs(x-phi)    < deltaP;}), phi0.rend());
    colsMax = std::distance(std::find_if(lambda0.rbegin(), lambda0.rend(), [&](auto x){return std::fabs(x-lambda) < deltaL;}), lambda0.rend());
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}
/***********************************************/

Double GravityfieldTopography::potential(const Time &/*time*/, const Vector3d &point) const
{
  try
  {
    const Double r = point.r();

    // find rectangle border
    UInt colsMin, rowsMin, colsMax, rowsMax;
    findRectangle(point, colsMin, rowsMin, colsMax, rowsMax);

    Double sum = 0.0;
    for(UInt k=colsMin; k<colsMax; k++)
    {
      const Vector3d p = rotaryZ(Angle(lambda0.at(k))).rotate(point);

      for(UInt i=rowsMin; i<rowsMax; i++)
      {
        const Double r1 = rLower(i,k);
        const Double r2 = rUpper(i,k);
        const Double dr = r2-r1;
        if(std::fabs(dr) < 0.001)
          continue;

        // transformation into local system
        Double x[2], y[2], z[2];
        x[0] = -sinPhi[i]*p.x() + cosPhi[i]*p.z();
        y[0] =  p.y();
        z[0] = z[1] = cosPhi[i]*p.x() + sinPhi[i]*p.z();
        const Double rcosPsi = z[0];
        const Double cosPsi  = rcosPsi/r;
        if((cosPsi < cosPsiMax) || (cosPsi > cosPsiMin))
          continue;


        // point mass
        // ----------
        if(cosPsi < cosPsiLine)
        {
          const Double r0 = 0.5*(r2+r1);
          z[0] -= r0;
          const Double l0 = std::sqrt(x[0]*x[0] + y[0]*y[0] + z[0]*z[0]);
          sum += rho(i,k)*r0*r0*dr*dLambda[k]*dPhi[i]/l0;
          continue;
        }

        // integration of a radial line
        // ----------------------------
        if(cosPsi < cosPsiPrism)
        {
          z[0] -= r1;
          z[1] -= r2;
          const Double hd = x[0]*x[0]+y[0]*y[0];
          const Double l1 = std::sqrt(hd + z[0]*z[0]);
          const Double l2 = std::sqrt(hd + z[1]*z[1]);
          sum += 0.5*(l2*r2 - l1*r1 + 3*rcosPsi * (l2-l1) + (3*rcosPsi*rcosPsi-r*r) * std::log((l2+r2-rcosPsi)/(l1+r1-rcosPsi)))*rho(i,k)*dLambda[k]*dPhi[i];
          continue;
        }

        // prism - Franziska Wild-Pfeiffer Page 26
        // ---------------------------------------
        // coordinates relative to prism corners
        const Double r0 = 0.5*(r2+r1);
        const Double dy = r0*dLambda[k]*dPhi[i] / std::fabs(phi[i+1]-phi[i]); // Volume of tesseroid: r0*r0*dr*dLambda[k]*dPhi[i] = dx*dy*dz
        x[0] += r0*std::fabs(phi[i]-phi0[i]);
        x[1]  = x[0]-r0*std::fabs(phi[i+1]-phi[i]);
        y[0] += 0.5*dy;
        y[1]  = y[0]-dy;
        z[0] -= r1;
        z[1] -= r2;

        Double sum2 = 0.;
        for(UInt ix=0; ix<2; ix++)
          for(UInt iy=0; iy<2; iy++)
            for(UInt iz=0; iz<2; iz++)
            {
              const Double l = std::sqrt(x[ix]*x[ix]+y[iy]*y[iy]+z[iz]*z[iz]);
              sum2 += std::pow(-1, ix+iy+iz) * (x[ix]*y[iy]*std::log(z[iz]+l) + y[iy]*z[iz]*std::log(x[ix]+l) + z[iz]*x[ix]*std::log(y[iy]+l)
                     -0.5*(x[ix]*x[ix]*std::atan(y[iy]*z[iz]/(x[ix]*l)) + y[iy]*y[iy]*std::atan(z[iz]*x[ix]/(y[iy]*l)) + z[iz]*z[iz]*std::atan(x[ix]*y[iy]/(z[iz]*l))));
            }
        sum += sum2 * rho(i,k);
      } // for(i=0..rows)
    } // for(k=0..cols)

    return factor * GRAVITATIONALCONSTANT * sum;
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

Double GravityfieldTopography::radialGradient(const Time &/*time*/, const Vector3d &point) const
{
  try
  {
    const Double r = point.r();

    // find rectangle border
    UInt colsMin, rowsMin, colsMax, rowsMax;
    findRectangle(point, colsMin, rowsMin, colsMax, rowsMax);

    Double sum = 0.0;
    for(UInt k=colsMin; k<colsMax; k++)
    {
      const Vector3d p = rotaryZ(Angle(lambda0.at(k))).rotate(point);

      for(UInt i=rowsMin; i<rowsMax; i++)
      {
        const Double r1 = rLower(i,k);
        const Double r2 = rUpper(i,k);
        const Double dr = r2-r1;
        if(std::fabs(dr)<0.001)
          continue;

        // transformation into local system
        Double x[2], y[2], z[2];
        x[0] = -sinPhi[i]*p.x() + cosPhi[i]*p.z();
        y[0] =  p.y();
        z[0] = z[1] = cosPhi[i]*p.x() + sinPhi[i]*p.z();
        const Double rcosPsi = z[0];
        const Double cosPsi  = rcosPsi/r;
        if((cosPsi < cosPsiMax) || (cosPsi > cosPsiMin))
          continue;

        // point mass
        // ----------
        if(cosPsi < cosPsiLine)
        {
          const Double r0 = 0.5*(r2+r1);
          z[0] -= r0;
          const Double l0 = std::sqrt(x[0]*x[0] + y[0]*y[0] + z[0]*z[0]);
          sum -= (r*r-r0*rcosPsi)/(l0*l0*l0)*rho(i,k)*r0*r0*dr*dLambda[k]*dPhi[i];
          continue;
        }

        // integration of a radial line
        // ----------------------------
        if(cosPsi < cosPsiPrism)
        {
          z[0] -= r1;
          z[1] -= r2;
          const Double hd = x[0]*x[0]+y[0]*y[0];
          const Double l1 = std::sqrt(hd + z[0]*z[0]);
          const Double l2 = std::sqrt(hd + z[1]*z[1]);
          sum += (r1*r1*r1/l1 - r2*r2*r2/l2 + l2*r2 - l1*r1 + 3*rcosPsi * (l2-l1)
                  +(3*rcosPsi*rcosPsi-r*r) * std::log((l2+r2-rcosPsi)/(l1+r1-rcosPsi)))
                 * rho(i,k)*dLambda[k]*dPhi[i];
          continue;
        }

        // computation point in local system
        const Vector3d p1(x[0], y[0], z[0]);

        // prism - Franziska Wild-Pfeiffer Page 26
        // ---------------------------------------
        // coordinates relative to prism corners
        const Double r0 = 0.5*(r2+r1);
        const Double dy = r0*dLambda[k]*dPhi[i] / std::fabs(phi[i+1]-phi[i]); // Volume of tesseroid: r0^2*dr*dLambda[k]*dPhi[i] = dx*dy*dz
        x[0] += r0*std::fabs(phi[i]-phi0[i]);
        x[1]  = x[0]-r0*std::fabs(phi[i+1]-phi[i]);
        y[0] += 0.5*dy;
        y[1]  = y[0]-dy;
        z[0] -= r1;
        z[1] -= r2;

        Vector3d dgxyz;
        for(UInt ix=0; ix<2; ix++)
          for(UInt iy=0; iy<2; iy++)
            for(UInt iz=0; iz<2; iz++)
            {
              const Double sign = std::pow(-1, ix+iy+iz);
              const Double l    = std::sqrt(x[ix]*x[ix]+y[iy]*y[iy]+z[iz]*z[iz]);
              const Double logx = std::log(x[ix]+l);
              const Double logy = std::log(y[iy]+l);
              const Double logz = std::log(z[iz]+l);

              //gradients prism
              dgxyz.x() += sign * (y[iy]*logz + z[iz]*logy - x[ix]*std::atan(y[iy]*z[iz]/(x[ix]*l)));
              dgxyz.y() += sign * (z[iz]*logx + x[ix]*logz - y[iy]*std::atan(z[iz]*x[ix]/(y[iy]*l)));
              dgxyz.z() += sign * (x[ix]*logy + y[iy]*logx - z[iz]*std::atan(x[ix]*y[iy]/(z[iz]*l)));
            }
        sum += rho(i,k) * inner(dgxyz, p1); // projection into radial direction

      } // for(i=0..rows)
    } //for(k=0..cols)

    return factor * GRAVITATIONALCONSTANT * sum/r;
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

Vector3d GravityfieldTopography::gravity(const Time &/*time*/, const Vector3d &point) const
{
  try
  {
    const Double r = point.r();

    // find rectangle border
    UInt colsMin, rowsMin, colsMax, rowsMax;
    findRectangle(point, colsMin, rowsMin, colsMax, rowsMax);

    Vector3d sum;
    for(UInt k=colsMin; k<colsMax; k++)
    {
      const Vector3d p = rotaryZ(Angle(lambda0.at(k))).rotate(point);

      Vector3d sum_local;
      for(UInt i=rowsMin; i<rowsMax; i++)
      {
        const Double r1 = rLower(i,k);
        const Double r2 = rUpper(i,k);
        const Double dr = r2-r1;
        if(std::fabs(dr) < 0.001)
          continue;

        // transformation into local system
        Double x[2], y[2], z[2];
        x[0] = -sinPhi[i]*p.x() + cosPhi[i]*p.z();
        y[0] =  p.y();
        z[0] = z[1] = cosPhi[i]*p.x() + sinPhi[i]*p.z();
        const Double rcosPsi = z[0];
        const Double cosPsi  = rcosPsi/r;
        if((cosPsi < cosPsiMax) || (cosPsi > cosPsiMin))
          continue;

        Vector3d dg;
        if(cosPsi < cosPsiLine)
        {
          // point mass
          // ----------
          const Double r0 = 0.5*(r2+r1);
          z[0] -= r0;
          const Double l0 = std::sqrt(x[0]*x[0] + y[0]*y[0] + z[0]*z[0]);
          const Double factor = -r0*r0*dr*dLambda[k]*dPhi[i]/(l0*l0*l0);
          dg = Vector3d(factor*x[0], factor*y[0], factor*z[0]);
        }
        else if(cosPsi < cosPsiPrism)
        {
          // integration of a radial line
          // ----------------------------
          const Vector3d dr(x[0]/r, y[0]/r, z[0]/r);
          z[0] -= r1;
          z[1] -= r2;
          const Double hd = x[0]*x[0]+y[0]*y[0];
          const Double l1 = std::sqrt(hd + z[0]*z[0]);
          const Double l2 = std::sqrt(hd + z[1]*z[1]);
          const Vector3d dl1(x[0]/l1, y[0]/l1, z[0]/l1);
          const Vector3d dl2(x[0]/l2, y[0]/l2, z[1]/l2);
          const Double term1 = l1+r1-rcosPsi;
          const Double term2 = l2+r2-rcosPsi;
          const Double term3 = 3*rcosPsi*rcosPsi-r*r;
          const Double logTerm2Term1 = std::log(term2/term1);
          const Double dV_dr  = -r * logTerm2Term1*dLambda[k]*dPhi[i];
          const Double dV_dl1 = -(r1 + 3*rcosPsi + term3/term1)*0.5*dLambda[k]*dPhi[i];
          const Double dV_dl2 =  (r2 + 3*rcosPsi + term3/term2)*0.5*dLambda[k]*dPhi[i];
          dg      = dV_dr*dr + dV_dl2*dl2 + dV_dl1*dl1;
          dg.z() += (3*(l2-l1) + 6*rcosPsi * logTerm2Term1 - term3/term2 + term3/term1)*0.5*dLambda[k]*dPhi[i]; // dV_drcosPsi = dV_dz
        }
        else
        {
          // prism - Franziska Wild-Pfeiffer Page 26
          // ---------------------------------------
          // coordinates relative to prism corners
          const Double r0 = 0.5*(r2+r1);
          const Double dy = r0*dLambda[k]*dPhi[i] / std::fabs(phi[i+1]-phi[i]); // Volume of tesseroid: r0*r0*dr*dLambda[k]*dPhi[i] = dx*dy*dz
          x[0] += r0*std::fabs(phi[i]-phi0[i]);
          x[1]  = x[0]-r0*std::fabs(phi[i+1]-phi[i]);
          y[0] += 0.5*dy;
          y[1]  = y[0]-dy;
          z[0] -= r1;
          z[1] -= r2;

          for(UInt ix=0; ix<2; ix++)
            for(UInt iy=0; iy<2; iy++)
              for(UInt iz=0; iz<2; iz++)
              {
                const Double sign = std::pow(-1, ix+iy+iz);
                const Double l    = std::sqrt(x[ix]*x[ix]+y[iy]*y[iy]+z[iz]*z[iz]);
                const Double logx = std::log(x[ix]+l);
                const Double logy = std::log(y[iy]+l);
                const Double logz = std::log(z[iz]+l);

                //gradients prism
                dg.x() += sign * (y[iy]*logz + z[iz]*logy - x[ix]*std::atan(y[iy]*z[iz]/(x[ix]*l)));
                dg.y() += sign * (z[iz]*logx + x[ix]*logz - y[iy]*std::atan(z[iz]*x[ix]/(y[iy]*l)));
                dg.z() += sign * (x[ix]*logy + y[iy]*logx - z[iz]*std::atan(x[ix]*y[iy]/(z[iz]*l)));
              }
        } // prim

        // rotate back (step 1)
        sum_local.x() += rho(i,k) * (-sinPhi[i]*dg.x() + cosPhi[i]*dg.z());
        sum_local.y() += rho(i,k) * dg.y();
        sum_local.z() += rho(i,k) * (cosPhi[i]*dg.x() + sinPhi[i]*dg.z());
      } // for(i=0..rows)

      // rotate back (step 2)
      sum += rotaryZ(Angle(-lambda0.at(k))).rotate(sum_local);
    } //for(k=0..cols)

    return factor * GRAVITATIONALCONSTANT * sum;
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

Tensor3d GravityfieldTopography::gravityGradient(const Time &/*time*/, const Vector3d &/*point*/) const
{
  try
  {
    throw(Exception("not implemented yet"));
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/

Vector3d GravityfieldTopography::deformation(const Time &/*time*/, const Vector3d &point, Double gravity, const Vector &hn, const Vector &ln) const
{
  SphericalHarmonics harm = sphericalHarmonics(Time(), hn.rows()-1, 0, DEFAULT_GM, DEFAULT_R);
  return harm.deformation(point, gravity, hn, ln);
}

/***********************************************/

void GravityfieldTopography::deformation(const std::vector<Time> &time, const std::vector<Vector3d> &point, const std::vector<Double> &gravity,
                                         const Vector &hn, const Vector &ln, std::vector<std::vector<Vector3d>> &disp) const
{
  SphericalHarmonics harm = sphericalHarmonics(Time(), hn.rows()-1, 0, DEFAULT_GM, DEFAULT_R);
  for(UInt k=0; k<point.size(); k++)
  {
    Vector3d d = harm.deformation(point.at(k), gravity.at(k), hn, ln);
    for(UInt i=0; i<time.size(); i++)
      disp.at(k).at(i) = d;
  }
}

/***********************************************/

void GravityfieldTopography::variance(const Time &/*time*/, const std::vector<Vector3d> &/*point*/, const Kernel &/*kernel*/, Matrix &/*D*/) const
{
}

/***********************************************/

SphericalHarmonics GravityfieldTopography::sphericalHarmonics(const Time &/*time*/, UInt /*maxDegree*/, UInt /*minDegree*/, Double /*GM*/, Double /*R*/) const
{
  try
  {
    throw(Exception("Conversion to spherical harmonics not implemented\nPlease use program GriddedTopography2PotentialCoefficients before."));
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/