1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
|
/***********************************************/
/**
* @file gravityfieldTopography.cpp
*
* @brief Gravity field from topographic masses.
* @see Gravityfield
*
* @author Torsten Mayer-Guerr
* @date 2013-02-10
*
*/
/***********************************************/
#include "base/import.h"
#include "base/sphericalHarmonics.h"
#include "parser/expressionParser.h"
#include "parser/dataVariables.h"
#include "parallel/parallel.h"
#include "config/config.h"
#include "inputOutput/logging.h"
#include "files/fileGriddedData.h"
#include "misc/miscGriddedData.h"
#include "classes/kernel/kernel.h"
#include "classes/gravityfield/gravityfield.h"
#include "classes/gravityfield/gravityfieldTopography.h"
/***********************************************/
GravityfieldTopography::GravityfieldTopography(Config &config)
{
try
{
FileName gridName;
ExpressionVariablePtr expressionUpper, expressionLower, expressionRho;
cosPsiMax = 1e99;
readConfig(config, "inputfileGridRectangular", gridName, Config::MUSTSET, "", "Digital Terrain Model");
readConfig(config, "density", expressionRho, Config::DEFAULT, "2670", "expression [kg/m**3]");
readConfig(config, "radialUpperBound", expressionUpper, Config::DEFAULT, "data0", "expression (variables 'height', 'data', 'L', 'B' and, 'area' are taken from the gridded data");
readConfig(config, "radialLowerBound", expressionLower, Config::DEFAULT, "0", "expression (variables 'height', 'data', 'L', 'B' and, 'area' are taken from the gridded data");
readConfig(config, "distanceMin", cosPsiMin, Config::DEFAULT, "0", "[km] min. influence distance (ignore near zone)");
readConfig(config, "distancePrism", cosPsiPrism, Config::DEFAULT, "15", "[km] max. distance for prism formular");
readConfig(config, "distanceLine", cosPsiLine, Config::DEFAULT, "100", "[km] max. distance for radial integration");
readConfig(config, "distanceMax", cosPsiMax, Config::OPTIONAL, "", "[km] max. influence distance (ignore far zone)");
readConfig(config, "factor", factor, Config::DEFAULT, "1.0", "the result is multiplied by this factor, set -1 to subtract the field");
if(isCreateSchema(config)) return;
cosPsiMin = std::cos(std::min(PI, 1e3/DEFAULT_R * cosPsiMin));
cosPsiPrism = std::cos(std::min(PI, 1e3/DEFAULT_R * cosPsiPrism));
cosPsiLine = std::cos(std::min(PI, 1e3/DEFAULT_R * cosPsiLine));
cosPsiMax = std::cos(std::min(PI, 1e3/DEFAULT_R * cosPsiMax));
// read rectangular grid
// ---------------------
GriddedDataRectangular grid;
readFileGriddedData(gridName, grid);
std::vector<Double> radius;
grid.geocentric(lambda0, phi0, radius);
grid.areaElements(dLambda, dPhi);
grid.cellBorders(lambda, phi);
for(UInt i=0; i<phi.size(); i++)
phi.at(i) = grid.ellipsoid(Angle(0.), Angle(phi.at(i)), 0.).phi(); // geocentric
// evaluate upper and lower height
// -------------------------------
VariableList varList;
addDataVariables(grid, varList);
expressionUpper->simplify(varList);
expressionLower->simplify(varList);
expressionRho ->simplify(varList);
rLower = Matrix(phi0.size(), lambda0.size());
rUpper = Matrix(phi0.size(), lambda0.size());
rho = Matrix(phi0.size(), lambda0.size());
for(UInt i=0; i<phi0.size(); i++)
for(UInt k=0; k<lambda0.size(); k++)
{
evaluateDataVariables(grid, i, k, varList);
rUpper(i,k) = radius.at(i) + expressionUpper->evaluate(varList);
rLower(i,k) = radius.at(i) + expressionLower->evaluate(varList);
rho(i,k) = expressionRho->evaluate(varList);
}
// precompute sin & cos terms
// --------------------------
sinL.resize(lambda0.size());
cosL.resize(lambda0.size());
for(UInt k=0; k<lambda0.size(); k++)
{
sinL.at(k) = std::sin(lambda0.at(k));
cosL.at(k) = std::cos(lambda0.at(k));
}
sinPhi.resize(phi0.size());
cosPhi.resize(phi0.size());
for(UInt i=0; i<phi0.size(); i++)
{
sinPhi.at(i) = std::sin(phi0.at(i));
cosPhi.at(i) = std::cos(phi0.at(i));
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
inline void GravityfieldTopography::findRectangle(const Vector3d &point, UInt &colsMin, UInt &rowsMin, UInt &colsMax, UInt &rowsMax) const
{
try
{
colsMin = 0;
rowsMin = 0;
colsMax = lambda0.size();
rowsMax = phi0.size();
if(cosPsiMax < -0.999)
return;
const Double phi = point.phi();
const Double lambda = point.lambda();
const Double deltaP = std::acos(cosPsiMax);
const Double deltaL = deltaP/std::cos(phi);
rowsMin = std::distance(phi0.begin(), std::find_if(phi0.begin(), phi0.end(), [&](auto x){return std::fabs(x-phi) < deltaP;}));
colsMin = std::distance(lambda0.begin(), std::find_if(lambda0.begin(), lambda0.end(), [&](auto x){return std::fabs(x-lambda) < deltaL;}));
rowsMax = std::distance(std::find_if(phi0.rbegin(), phi0.rend(), [&](auto x){return std::fabs(x-phi) < deltaP;}), phi0.rend());
colsMax = std::distance(std::find_if(lambda0.rbegin(), lambda0.rend(), [&](auto x){return std::fabs(x-lambda) < deltaL;}), lambda0.rend());
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Double GravityfieldTopography::potential(const Time &/*time*/, const Vector3d &point) const
{
try
{
const Double r = point.r();
// find rectangle border
UInt colsMin, rowsMin, colsMax, rowsMax;
findRectangle(point, colsMin, rowsMin, colsMax, rowsMax);
Double sum = 0.0;
for(UInt k=colsMin; k<colsMax; k++)
{
const Vector3d p = rotaryZ(Angle(lambda0.at(k))).rotate(point);
for(UInt i=rowsMin; i<rowsMax; i++)
{
const Double r1 = rLower(i,k);
const Double r2 = rUpper(i,k);
const Double dr = r2-r1;
if(std::fabs(dr) < 0.001)
continue;
// transformation into local system
Double x[2], y[2], z[2];
x[0] = -sinPhi[i]*p.x() + cosPhi[i]*p.z();
y[0] = p.y();
z[0] = z[1] = cosPhi[i]*p.x() + sinPhi[i]*p.z();
const Double rcosPsi = z[0];
const Double cosPsi = rcosPsi/r;
if((cosPsi < cosPsiMax) || (cosPsi > cosPsiMin))
continue;
// point mass
// ----------
if(cosPsi < cosPsiLine)
{
const Double r0 = 0.5*(r2+r1);
z[0] -= r0;
const Double l0 = std::sqrt(x[0]*x[0] + y[0]*y[0] + z[0]*z[0]);
sum += rho(i,k)*r0*r0*dr*dLambda[k]*dPhi[i]/l0;
continue;
}
// integration of a radial line
// ----------------------------
if(cosPsi < cosPsiPrism)
{
z[0] -= r1;
z[1] -= r2;
const Double hd = x[0]*x[0]+y[0]*y[0];
const Double l1 = std::sqrt(hd + z[0]*z[0]);
const Double l2 = std::sqrt(hd + z[1]*z[1]);
sum += 0.5*(l2*r2 - l1*r1 + 3*rcosPsi * (l2-l1) + (3*rcosPsi*rcosPsi-r*r) * std::log((l2+r2-rcosPsi)/(l1+r1-rcosPsi)))*rho(i,k)*dLambda[k]*dPhi[i];
continue;
}
// prism - Franziska Wild-Pfeiffer Page 26
// ---------------------------------------
// coordinates relative to prism corners
const Double r0 = 0.5*(r2+r1);
const Double dy = r0*dLambda[k]*dPhi[i] / std::fabs(phi[i+1]-phi[i]); // Volume of tesseroid: r0*r0*dr*dLambda[k]*dPhi[i] = dx*dy*dz
x[0] += r0*std::fabs(phi[i]-phi0[i]);
x[1] = x[0]-r0*std::fabs(phi[i+1]-phi[i]);
y[0] += 0.5*dy;
y[1] = y[0]-dy;
z[0] -= r1;
z[1] -= r2;
Double sum2 = 0.;
for(UInt ix=0; ix<2; ix++)
for(UInt iy=0; iy<2; iy++)
for(UInt iz=0; iz<2; iz++)
{
const Double l = std::sqrt(x[ix]*x[ix]+y[iy]*y[iy]+z[iz]*z[iz]);
sum2 += std::pow(-1, ix+iy+iz) * (x[ix]*y[iy]*std::log(z[iz]+l) + y[iy]*z[iz]*std::log(x[ix]+l) + z[iz]*x[ix]*std::log(y[iy]+l)
-0.5*(x[ix]*x[ix]*std::atan(y[iy]*z[iz]/(x[ix]*l)) + y[iy]*y[iy]*std::atan(z[iz]*x[ix]/(y[iy]*l)) + z[iz]*z[iz]*std::atan(x[ix]*y[iy]/(z[iz]*l))));
}
sum += sum2 * rho(i,k);
} // for(i=0..rows)
} // for(k=0..cols)
return factor * GRAVITATIONALCONSTANT * sum;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Double GravityfieldTopography::radialGradient(const Time &/*time*/, const Vector3d &point) const
{
try
{
const Double r = point.r();
// find rectangle border
UInt colsMin, rowsMin, colsMax, rowsMax;
findRectangle(point, colsMin, rowsMin, colsMax, rowsMax);
Double sum = 0.0;
for(UInt k=colsMin; k<colsMax; k++)
{
const Vector3d p = rotaryZ(Angle(lambda0.at(k))).rotate(point);
for(UInt i=rowsMin; i<rowsMax; i++)
{
const Double r1 = rLower(i,k);
const Double r2 = rUpper(i,k);
const Double dr = r2-r1;
if(std::fabs(dr)<0.001)
continue;
// transformation into local system
Double x[2], y[2], z[2];
x[0] = -sinPhi[i]*p.x() + cosPhi[i]*p.z();
y[0] = p.y();
z[0] = z[1] = cosPhi[i]*p.x() + sinPhi[i]*p.z();
const Double rcosPsi = z[0];
const Double cosPsi = rcosPsi/r;
if((cosPsi < cosPsiMax) || (cosPsi > cosPsiMin))
continue;
// point mass
// ----------
if(cosPsi < cosPsiLine)
{
const Double r0 = 0.5*(r2+r1);
z[0] -= r0;
const Double l0 = std::sqrt(x[0]*x[0] + y[0]*y[0] + z[0]*z[0]);
sum -= (r*r-r0*rcosPsi)/(l0*l0*l0)*rho(i,k)*r0*r0*dr*dLambda[k]*dPhi[i];
continue;
}
// integration of a radial line
// ----------------------------
if(cosPsi < cosPsiPrism)
{
z[0] -= r1;
z[1] -= r2;
const Double hd = x[0]*x[0]+y[0]*y[0];
const Double l1 = std::sqrt(hd + z[0]*z[0]);
const Double l2 = std::sqrt(hd + z[1]*z[1]);
sum += (r1*r1*r1/l1 - r2*r2*r2/l2 + l2*r2 - l1*r1 + 3*rcosPsi * (l2-l1)
+(3*rcosPsi*rcosPsi-r*r) * std::log((l2+r2-rcosPsi)/(l1+r1-rcosPsi)))
* rho(i,k)*dLambda[k]*dPhi[i];
continue;
}
// computation point in local system
const Vector3d p1(x[0], y[0], z[0]);
// prism - Franziska Wild-Pfeiffer Page 26
// ---------------------------------------
// coordinates relative to prism corners
const Double r0 = 0.5*(r2+r1);
const Double dy = r0*dLambda[k]*dPhi[i] / std::fabs(phi[i+1]-phi[i]); // Volume of tesseroid: r0^2*dr*dLambda[k]*dPhi[i] = dx*dy*dz
x[0] += r0*std::fabs(phi[i]-phi0[i]);
x[1] = x[0]-r0*std::fabs(phi[i+1]-phi[i]);
y[0] += 0.5*dy;
y[1] = y[0]-dy;
z[0] -= r1;
z[1] -= r2;
Vector3d dgxyz;
for(UInt ix=0; ix<2; ix++)
for(UInt iy=0; iy<2; iy++)
for(UInt iz=0; iz<2; iz++)
{
const Double sign = std::pow(-1, ix+iy+iz);
const Double l = std::sqrt(x[ix]*x[ix]+y[iy]*y[iy]+z[iz]*z[iz]);
const Double logx = std::log(x[ix]+l);
const Double logy = std::log(y[iy]+l);
const Double logz = std::log(z[iz]+l);
//gradients prism
dgxyz.x() += sign * (y[iy]*logz + z[iz]*logy - x[ix]*std::atan(y[iy]*z[iz]/(x[ix]*l)));
dgxyz.y() += sign * (z[iz]*logx + x[ix]*logz - y[iy]*std::atan(z[iz]*x[ix]/(y[iy]*l)));
dgxyz.z() += sign * (x[ix]*logy + y[iy]*logx - z[iz]*std::atan(x[ix]*y[iy]/(z[iz]*l)));
}
sum += rho(i,k) * inner(dgxyz, p1); // projection into radial direction
} // for(i=0..rows)
} //for(k=0..cols)
return factor * GRAVITATIONALCONSTANT * sum/r;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Vector3d GravityfieldTopography::gravity(const Time &/*time*/, const Vector3d &point) const
{
try
{
const Double r = point.r();
// find rectangle border
UInt colsMin, rowsMin, colsMax, rowsMax;
findRectangle(point, colsMin, rowsMin, colsMax, rowsMax);
Vector3d sum;
for(UInt k=colsMin; k<colsMax; k++)
{
const Vector3d p = rotaryZ(Angle(lambda0.at(k))).rotate(point);
Vector3d sum_local;
for(UInt i=rowsMin; i<rowsMax; i++)
{
const Double r1 = rLower(i,k);
const Double r2 = rUpper(i,k);
const Double dr = r2-r1;
if(std::fabs(dr) < 0.001)
continue;
// transformation into local system
Double x[2], y[2], z[2];
x[0] = -sinPhi[i]*p.x() + cosPhi[i]*p.z();
y[0] = p.y();
z[0] = z[1] = cosPhi[i]*p.x() + sinPhi[i]*p.z();
const Double rcosPsi = z[0];
const Double cosPsi = rcosPsi/r;
if((cosPsi < cosPsiMax) || (cosPsi > cosPsiMin))
continue;
Vector3d dg;
if(cosPsi < cosPsiLine)
{
// point mass
// ----------
const Double r0 = 0.5*(r2+r1);
z[0] -= r0;
const Double l0 = std::sqrt(x[0]*x[0] + y[0]*y[0] + z[0]*z[0]);
const Double factor = -r0*r0*dr*dLambda[k]*dPhi[i]/(l0*l0*l0);
dg = Vector3d(factor*x[0], factor*y[0], factor*z[0]);
}
else if(cosPsi < cosPsiPrism)
{
// integration of a radial line
// ----------------------------
const Vector3d dr(x[0]/r, y[0]/r, z[0]/r);
z[0] -= r1;
z[1] -= r2;
const Double hd = x[0]*x[0]+y[0]*y[0];
const Double l1 = std::sqrt(hd + z[0]*z[0]);
const Double l2 = std::sqrt(hd + z[1]*z[1]);
const Vector3d dl1(x[0]/l1, y[0]/l1, z[0]/l1);
const Vector3d dl2(x[0]/l2, y[0]/l2, z[1]/l2);
const Double term1 = l1+r1-rcosPsi;
const Double term2 = l2+r2-rcosPsi;
const Double term3 = 3*rcosPsi*rcosPsi-r*r;
const Double logTerm2Term1 = std::log(term2/term1);
const Double dV_dr = -r * logTerm2Term1*dLambda[k]*dPhi[i];
const Double dV_dl1 = -(r1 + 3*rcosPsi + term3/term1)*0.5*dLambda[k]*dPhi[i];
const Double dV_dl2 = (r2 + 3*rcosPsi + term3/term2)*0.5*dLambda[k]*dPhi[i];
dg = dV_dr*dr + dV_dl2*dl2 + dV_dl1*dl1;
dg.z() += (3*(l2-l1) + 6*rcosPsi * logTerm2Term1 - term3/term2 + term3/term1)*0.5*dLambda[k]*dPhi[i]; // dV_drcosPsi = dV_dz
}
else
{
// prism - Franziska Wild-Pfeiffer Page 26
// ---------------------------------------
// coordinates relative to prism corners
const Double r0 = 0.5*(r2+r1);
const Double dy = r0*dLambda[k]*dPhi[i] / std::fabs(phi[i+1]-phi[i]); // Volume of tesseroid: r0*r0*dr*dLambda[k]*dPhi[i] = dx*dy*dz
x[0] += r0*std::fabs(phi[i]-phi0[i]);
x[1] = x[0]-r0*std::fabs(phi[i+1]-phi[i]);
y[0] += 0.5*dy;
y[1] = y[0]-dy;
z[0] -= r1;
z[1] -= r2;
for(UInt ix=0; ix<2; ix++)
for(UInt iy=0; iy<2; iy++)
for(UInt iz=0; iz<2; iz++)
{
const Double sign = std::pow(-1, ix+iy+iz);
const Double l = std::sqrt(x[ix]*x[ix]+y[iy]*y[iy]+z[iz]*z[iz]);
const Double logx = std::log(x[ix]+l);
const Double logy = std::log(y[iy]+l);
const Double logz = std::log(z[iz]+l);
//gradients prism
dg.x() += sign * (y[iy]*logz + z[iz]*logy - x[ix]*std::atan(y[iy]*z[iz]/(x[ix]*l)));
dg.y() += sign * (z[iz]*logx + x[ix]*logz - y[iy]*std::atan(z[iz]*x[ix]/(y[iy]*l)));
dg.z() += sign * (x[ix]*logy + y[iy]*logx - z[iz]*std::atan(x[ix]*y[iy]/(z[iz]*l)));
}
} // prim
// rotate back (step 1)
sum_local.x() += rho(i,k) * (-sinPhi[i]*dg.x() + cosPhi[i]*dg.z());
sum_local.y() += rho(i,k) * dg.y();
sum_local.z() += rho(i,k) * (cosPhi[i]*dg.x() + sinPhi[i]*dg.z());
} // for(i=0..rows)
// rotate back (step 2)
sum += rotaryZ(Angle(-lambda0.at(k))).rotate(sum_local);
} //for(k=0..cols)
return factor * GRAVITATIONALCONSTANT * sum;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Tensor3d GravityfieldTopography::gravityGradient(const Time &/*time*/, const Vector3d &/*point*/) const
{
try
{
throw(Exception("not implemented yet"));
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Vector3d GravityfieldTopography::deformation(const Time &/*time*/, const Vector3d &point, Double gravity, const Vector &hn, const Vector &ln) const
{
SphericalHarmonics harm = sphericalHarmonics(Time(), hn.rows()-1, 0, DEFAULT_GM, DEFAULT_R);
return harm.deformation(point, gravity, hn, ln);
}
/***********************************************/
void GravityfieldTopography::deformation(const std::vector<Time> &time, const std::vector<Vector3d> &point, const std::vector<Double> &gravity,
const Vector &hn, const Vector &ln, std::vector<std::vector<Vector3d>> &disp) const
{
SphericalHarmonics harm = sphericalHarmonics(Time(), hn.rows()-1, 0, DEFAULT_GM, DEFAULT_R);
for(UInt k=0; k<point.size(); k++)
{
Vector3d d = harm.deformation(point.at(k), gravity.at(k), hn, ln);
for(UInt i=0; i<time.size(); i++)
disp.at(k).at(i) = d;
}
}
/***********************************************/
void GravityfieldTopography::variance(const Time &/*time*/, const std::vector<Vector3d> &/*point*/, const Kernel &/*kernel*/, Matrix &/*D*/) const
{
}
/***********************************************/
SphericalHarmonics GravityfieldTopography::sphericalHarmonics(const Time &/*time*/, UInt /*maxDegree*/, UInt /*minDegree*/, Double /*GM*/, Double /*R*/) const
{
try
{
throw(Exception("Conversion to spherical harmonics not implemented\nPlease use program GriddedTopography2PotentialCoefficients before."));
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|