1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
|
/***********************************************/
/**
* @file gravityfieldTrend.cpp
*
* @brief Gravityfield as trend.
* @see Gravityfield
*
* @author Torsten Mayer-Guerr
* @date 2007-06-15
*
*/
/***********************************************/
#include "base/import.h"
#include "base/sphericalHarmonics.h"
#include "config/config.h"
#include "classes/kernel/kernel.h"
#include "classes/gravityfield/gravityfield.h"
#include "classes/gravityfield/gravityfieldTrend.h"
/***********************************************/
GravityfieldTrend::GravityfieldTrend(Config &config)
{
try
{
readConfig(config, "gravityfield", gravityfield, Config::MUSTSET, "", "this field is multiplicated by (time-time0)/timeStep");
readConfig(config, "timeStart", time0, Config::MUSTSET, STRING_J2000, "reference time");
readConfig(config, "timeStep", timeStep, Config::MUSTSET, "365.25", "");
if(isCreateSchema(config)) return;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Double GravityfieldTrend::factor(Time time) const
{
if(time == Time())
return 0;
return (time-time0).mjd()/timeStep.mjd();
}
/***********************************************/
Double GravityfieldTrend::potential(const Time &time, const Vector3d &point) const
{
return factor(time) * gravityfield->potential(time, point);
}
/***********************************************/
Double GravityfieldTrend::radialGradient(const Time &time, const Vector3d &point) const
{
return factor(time) * gravityfield->radialGradient(time, point);
}
/***********************************************/
Double GravityfieldTrend::field(const Time &time, const Vector3d &point, const Kernel &kernel) const
{
return factor(time) * gravityfield->field(time, point, kernel);
}
/***********************************************/
Vector3d GravityfieldTrend::gravity(const Time &time, const Vector3d &point) const
{
return factor(time) * gravityfield->gravity(time, point);
}
/***********************************************/
Tensor3d GravityfieldTrend::gravityGradient(const Time &time, const Vector3d &point) const
{
return factor(time) * gravityfield->gravityGradient(time, point);
}
/***********************************************/
Vector3d GravityfieldTrend::deformation(const Time &time, const Vector3d &point, Double gravity, const Vector &hn, const Vector &ln) const
{
return factor(time) * gravityfield->deformation(time, point, gravity, hn, ln);
}
/***********************************************/
void GravityfieldTrend::deformation(const std::vector<Time> &time, const std::vector<Vector3d> &point, const std::vector<Double> &gravity,
const Vector &hn, const Vector &ln, std::vector<std::vector<Vector3d>> &disp) const
{
if((time.size()==0) || (point.size()==0))
return;
std::vector<std::vector<Vector3d>> disp2(point.size());
for(UInt k=0; k<point.size(); k++)
disp2.at(k).resize(time.size());
gravityfield->deformation(time, point, gravity, hn, ln, disp2);
for(UInt i=0; i<time.size(); i++)
{
const Double f = factor(time.at(i));
for(UInt k=0; k<point.size(); k++)
disp.at(k).at(i) += f * disp2.at(k).at(i);
}
}
/***********************************************/
void GravityfieldTrend::variance(const Time &/*time*/, const std::vector<Vector3d> &/*point*/, const Kernel &/*kernel*/, Matrix &/*D*/) const
{
}
/***********************************************/
SphericalHarmonics GravityfieldTrend::sphericalHarmonics(const Time &time, UInt maxDegree, UInt minDegree, Double GM, Double R) const
{
return factor(time) * gravityfield->sphericalHarmonics(time, maxDegree, minDegree, GM, R);
}
/***********************************************/
|