File: kernelFilterGauss.h

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (62 lines) | stat: -rw-r--r-- 1,599 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/***********************************************/
/**
* @file kernelFilterGauss.h
*
* @brief Kernel smoothed by an Gaussian filter.
* @see Kernel
*
* @author Torsten Mayer-Guerr
* @date 2003-09-20
*
*/
/***********************************************/

#ifndef __GROOPS_KERNELFILTERGAUSS__
#define __GROOPS_KERNELFILTERGAUSS__

// Latex documentation
#ifdef DOCSTRING_Kernel
static const char *docstringKernelFilterGauss = R"(
\subsection{FilterGauss}
Another \configClass{kernel}{kernelType} is smoothed by a gauss filter
which is defined by
\begin{equation}
F(\cos\psi) = \frac{b\cdot e^{-b(1-\cos\psi)}}{1-e^{-2b}}
\end{equation}
with $b = \frac{ln(2)}{1-\cos(r/R)}$ where $r$ is the given
smoothing \config{radius} in km and $R=6378.1366$~km is the
Earth radius.
The coefficients~$k_n$ of the \config{kernel} are multiplicated by
\begin{equation}
f_n = \frac{1}{2n+1} \int_{-1}^1 F(t)\cdot \bar{P}_n(t)\,dt.
\end{equation}
)";
#endif

/***********************************************/

#include "classes/kernel/kernel.h"

/***** CLASS ***********************************/

/** @brief Kernel smoothed by an Gaussian filter.
* @ingroup kernelGroup
* @see Kernel */
class KernelFilterGauss : public Kernel
{
  KernelPtr kernel;
  Double    radius;
  mutable Vector filterCoeff;

  Vector computeFilterCoefficients(UInt degree) const;

public:
  KernelFilterGauss(Config &config);

  Vector   coefficients       (const Vector3d &p, UInt degree) const;
  Vector   inverseCoefficients(const Vector3d &p, UInt degree, Bool interior) const;
};

/***********************************************/

#endif