1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
/***********************************************/
/**
* @file kernelGeoid.cpp
*
* @brief Integral kernel of geoid computation.
* (= Poisson Kern * gamma).
* @see Kernel
*
* @author Torsten Mayer-Guerr
* @date 2003-09-20
*
*/
/***********************************************/
#include "base/import.h"
#include "base/planets.h"
#include "classes/gravityfield/gravityfield.h"
#include "classes/kernel/kernel.h"
#include "classes/kernel/kernelGeoid.h"
/***********************************************/
Vector KernelGeoid::coefficients(Vector3d const &q, UInt degree) const
{
try
{
if(degree==INFINITYDEGREE)
throw(Exception("INFINITYDEGREE requested"));
Vector k(degree+1);
Double *kn = k.field();
Double gamma = Planets::normalGravity(q);
for(UInt n=0; n<=degree; n++)
*kn++ = gamma;
return k;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Vector KernelGeoid::inverseCoefficients(Vector3d const &p, UInt degree, Bool /*interior*/) const
{
try
{
if(degree==INFINITYDEGREE)
throw(Exception("INFINITYDEGREE requested"));
Vector k(degree+1);
Double *kn = k.field();
Double gamma = Planets::normalGravity(p);
for(UInt n=0; n<=degree; n++)
*kn++ = 1./gamma;
return k;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Double KernelGeoid::kernel(Vector3d const &p, Vector3d const &q) const
{
Vector3d diff = p-q;
Double r = p.r();
Double R = q.r();
Double l = diff.r();
return Planets::normalGravity(q) * R*(r*r-R*R)/(l*l*l);
}
/***********************************************/
Double KernelGeoid::radialDerivative(Vector3d const &p, Vector3d const &q) const
{
Vector3d diff = p-q;
Double r = p.r();
Double R = q.r();
Double l = diff.r();
Double cos_psi = (R*R+r*r-l*l)/(2*R*r);
Double dl_dr = (r-R*cos_psi)/l;
return Planets::normalGravity(q) * R*(2*r*l-(r*r-R*R)*3*dl_dr)/(l*l*l*l);
}
/***********************************************/
Vector3d KernelGeoid::gradient(Vector3d const &p, Vector3d const &q) const
{
Vector3d diff = p-q;
Double r = p.r();
Double l = diff.r();
Double R = q.r();
return Planets::normalGravity(q) * (2/(l*l*l)*p - 3*(r*r-R*R)/(l*l*l*l*l)*diff);
}
/***********************************************/
Tensor3d KernelGeoid::gradientGradient(const Vector3d &p, const Vector3d &q) const
{
Tensor3d tns;
Vector3d diff = p-q;
Double r = p.r();
Double R = q.r();
Double l = diff.r();
Double l2 = l*l;
Double l3 = l2*l;
Double l5 = l3*l2;
Double l7 = l5*l2;
Double term = r*r-R*R;
tns.xx() = 2.0/l3 - 12.0*p.x()*diff.x()/l5 + 15*term*diff.x()*diff.x()/l7 - 3.0*term/l5;
tns.yy() = 2.0/l3 - 12.0*p.y()*diff.y()/l5 + 15*term*diff.y()*diff.y()/l7 - 3.0*term/l5;
tns.zz() = 2.0/l3 - 12.0*p.z()*diff.z()/l5 + 15*term*diff.z()*diff.z()/l7 - 3.0*term/l5;
tns.xy() = -6.0*(p.x()*diff.y()+p.y()*diff.x())/l5 + 15.0*term*diff.x()*diff.y()/l7;
tns.xz() = -6.0*(p.x()*diff.z()+p.z()*diff.x())/l5 + 15.0*term*diff.x()*diff.z()/l7;
tns.yz() = -6.0*(p.y()*diff.z()+p.z()*diff.y())/l5 + 15.0*term*diff.y()*diff.z()/l7;
return Planets::normalGravity(q) * tns;
}
/***********************************************/
Double KernelGeoid::inverseKernel(Vector3d const &p, Vector3d const &q, const Kernel &kernel) const
{
// geoid = potential/gamma
return (1./Planets::normalGravity(p)) * kernel.kernel(p, q);
}
/***********************************************/
Double KernelGeoid::inverseKernel(const Time &time, const Vector3d &p, const GravityfieldBase &field) const
{
// geoid = potential/gamma
return (1./Planets::normalGravity(p)) * field.potential(time, p);
}
/***********************************************/
|