1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
/***********************************************/
/**
* @file kernelSingleLayer.cpp
*
* @brief Single layer density.
* @see Kernel
*
* @author Torsten Mayer-Guerr
* @date 2003-09-20
*
*/
/***********************************************/
#include "base/import.h"
#include "base/legendrePolynomial.h"
#include "files/fileMatrix.h"
#include "classes/gravityfield/gravityfield.h"
#include "classes/kernel/kernel.h"
#include "classes/kernel/kernelSingleLayer.h"
/***********************************************/
KernelSingleLayer::KernelSingleLayer(Config &config)
{
try
{
FileName loveNumberName;
readConfig(config, "inputfileLoadingLoveNumber", loveNumberName, Config::OPTIONAL, "{groopsDataDir}/loading/loadLoveNumbers_Gegout97.txt", "");
if(isCreateSchema(config)) return;
if(!loveNumberName.empty())
readFileMatrix(loveNumberName, kn);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Vector KernelSingleLayer::coefficients(Vector3d const &q, UInt degree) const
{
try
{
if((degree==INFINITYDEGREE) && (kn.rows()>0))
degree = kn.rows()-1;
if(degree==INFINITYDEGREE)
throw(Exception("INFINITYDEGREE requested"));
Vector coeff(degree+1);
Double *cp = coeff.field();
Double factor = 4*PI*GRAVITATIONALCONSTANT*q.r();
for(UInt n=0; n<std::min(degree+1, kn.size()); n++)
*cp++ = factor * (1.+kn(n)) / (2.*n+1.);
for(UInt n=std::min(degree+1, kn.size()); n<=degree; n++)
*cp++ = factor / (2.*n+1.);
return coeff;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Vector KernelSingleLayer::inverseCoefficients(Vector3d const &p, UInt degree, Bool interior) const
{
try
{
if((degree==INFINITYDEGREE) && (kn.rows()>0))
degree = kn.rows()-1;
if(degree==INFINITYDEGREE)
throw(Exception("INFINITYDEGREE requested"));
if(interior)
throw(Exception("interior not implemented"));
Vector coeff(degree+1);
Double *cp = coeff.field();
Double factor = 1./(4.*PI*GRAVITATIONALCONSTANT*p.r());
for(UInt n=0; n<std::min(degree+1, kn.size()); n++)
*cp++ = factor * (2.*n+1.) / (1.+kn(n));
for(UInt n=std::min(degree+1, kn.size()); n<=degree; n++)
*cp++ = factor * (2.*n+1.);
return coeff;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Double KernelSingleLayer::kernel(Vector3d const &p, Vector3d const &q) const
{
try
{
Double K = 4*PI*GRAVITATIONALCONSTANT/(p-q).r();
// add love load numbers
if(kn.size())
{
Vector coeff(kn.rows());
Double *cp = coeff.field();
const Double factor = 4*PI*GRAVITATIONALCONSTANT/q.r();
for(UInt n=0; n<kn.rows(); n++)
*cp++ = factor*kn(n)/(2.*n+1.);
K += Kernel::kernel(p, q, coeff);
}
return K;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Double KernelSingleLayer::radialDerivative(Vector3d const &p, Vector3d const &q) const
{
try
{
const Double r = p.r();
const Double R = q.r();
const Double l = (p-q).r();
const Double cos_psi = (R*R+r*r-l*l)/(2*R*r);
Double dKdr = -4*PI*GRAVITATIONALCONSTANT/(l*l*l) * (r-R*cos_psi);
if(kn.rows())
{
Vector coeff(kn.rows());
Double *cp = coeff.field();
const Double factor = 4*PI*GRAVITATIONALCONSTANT/q.r();
for(UInt n=0; n<kn.rows(); n++)
*cp++ = factor*kn(n)/(2.*n+1.);
dKdr += Kernel::radialDerivative(p, q, coeff);
}
return dKdr;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Vector3d KernelSingleLayer::gradient(Vector3d const &p, Vector3d const &q) const
{
try
{
const Double l = (p-q).r();
Vector3d g = -4*PI*GRAVITATIONALCONSTANT/(l*l*l) * (p-q);
if(kn.rows())
{
Vector coeff(kn.rows());
Double *cp = coeff.field();
const Double factor = 4*PI*GRAVITATIONALCONSTANT/q.r();
for(UInt n=0; n<kn.rows(); n++)
*cp++ = factor*kn(n)/(2.*n+1.);
g += Kernel::gradient(p, q, coeff);
}
return g;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Double KernelSingleLayer::inverseKernel(Vector3d const &p, Vector3d const &q, const Kernel &kernel) const
{
try
{
Double f = -1./(4.*PI*GRAVITATIONALCONSTANT) * (2*kernel.radialDerivative(p,q) + kernel.kernel(p,q)/p.r());
if(kn.rows())
{
Double r = p.r();
Double R = q.r();
Double t = inner(p, q)/r/R; // t = cos(psi)
Vector k2 = kernel.coefficients(p, kn.rows()-1);
Vector k1(kn.rows());
Double f1 = R/r;
Double f2 = R/r;
Double factor = 1./(4.*PI*GRAVITATIONALCONSTANT*p.r());
Double *p1 = k1.field();
const Double *p2 = k2.field();
for(UInt n=0; n<kn.rows(); n++)
{
// k1(n) *= (R/r)^(n+1) * sqrt(2n+1) * k2(n));
*p1++ = f1 * factor * (2.*n+1.) * (1/(1.+kn(n))-1) * sqrt(2.*n+1.) * *p2++;
f1 *= f2;
}
f += LegendrePolynomial::sum(t, k1, kn.rows()-1);
}
return f;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Double KernelSingleLayer::inverseKernel(const Time &time, const Vector3d &p, const GravityfieldBase &field) const
{
try
{
Double f = -1./(4.*PI*GRAVITATIONALCONSTANT) * (2*field.radialGradient(time,p) + field.potential(time,p)/p.r());
if(kn.rows())
{
Vector coeff(kn.rows());
Double *cp = coeff.field();
Double factor = 1./(4.*PI*GRAVITATIONALCONSTANT*p.r());
for(UInt n=0; n<kn.rows(); n++)
*cp++ = factor * (2.*n+1.) * (1/(1.+kn(n))-1);
// Convolution with the kernel
SphericalHarmonics harmonics = field.sphericalHarmonics(time, coeff.rows()-1);
f += inner(coeff, harmonics.Yn(p));
}
return f;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|