File: kernelStokes.cpp

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (237 lines) | stat: -rw-r--r-- 7,258 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/***********************************************/
/**
* @file kernelStokes.cpp
*
* @brief Stokes kernel (gravity anomalies).
* @see Kernel
*
* @author Torsten Mayer-Guerr
* @date 2003-09-20
*
*/
/***********************************************/

#include "base/import.h"
#include "classes/gravityfield/gravityfield.h"
#include "classes/kernel/kernel.h"
#include "classes/kernel/kernelStokes.h"

/***********************************************/

Vector KernelStokes::coefficients(Vector3d const &q, UInt degree) const
{
  if(degree==INFINITYDEGREE)
    throw(Exception("In KernelStokes::coefficients: INFINITYDEGREE requested"));

  Double  R = q.r();
  Vector  k(degree+1);
  Double *kn = k.field();

  for(UInt n=0; n<=degree; n++)
    *kn++ = R * ((n==1) ? (0.0) : (1.0/(n-1.0)) );

  return k;
}

/***********************************************/

Vector KernelStokes::inverseCoefficients(Vector3d const &p, UInt degree, Bool interior) const
{
  if(degree==INFINITYDEGREE)
    throw(Exception("In KernelStokes::inverseCoefficients: INFINITYDEGREE requested"));

  Double  r = p.r();
  Vector  k(degree+1);
  Double *kn = k.field();

  if(interior)
    for(UInt n=0; n<=degree; n++)
      *kn++ = -(n+2.)/r;
  else
    for(UInt n=0; n<=degree; n++)
      *kn++ = (n-1.)/r;

  return k;
}

/***********************************************/

Double KernelStokes::kernel(Vector3d const &p, Vector3d const &q) const
{
  Vector3d diff  = p-q;
  Double r       = p.r();
  Double R       = q.r();
  Double l       = diff.r();
  Double cos_psi = (R*R+r*r-l*l)/(2*R*r);

  return R*(2*R/l-3*R*l/(r*r)-R*R/(r*r)*cos_psi*(5+3*log((l+r-R*cos_psi)/(2*r))));
}

/***********************************************/

Double KernelStokes::radialDerivative(Vector3d const &p, Vector3d const &q) const
{
  Vector3d diff  = p-q;
  Double r       = p.r();
  Double R       = q.r();
  Double l       = diff.r();
  Double cos_psi = (R*R+r*r-l*l)/(2*R*r);

  Double term0   = (R*R+r*r-l*l);
  Double term    = (r+l-R)*(r+l+R);
  Double ln_term = log(term/(4*r*r));
  Double r2      = r*r;
  Double r3      = r2*r;
  Double r4      = r3*r;

  // Ableitungen Stokes nach r,l
  // Kettenregel: ds/dr = dS/du*du/dr + dS/dl*dl/dr  mit u = r
  Double dS_du = R*(6*R*l/r3+1.5*R*term0*(5+3*ln_term)/r4
                 -R*(5+3*ln_term)/r2
                 -3*R*term0*(0.25*term0/r3-0.5*(r-0.5*term0/r+l)/r2)/(r2*(r-0.5*term0/r+l)));

  Double dS_dl = R*(R/r3*(-2*r3/(l*l)-3*r+5*l+3*l*ln_term
                -3*term0*(l+r)/term));

  Double dl_dr = (r-R*cos_psi)/l;

  Double dS_dr = dS_du+dS_dl*dl_dr;

  return dS_dr;
}

/***********************************************/

Vector3d KernelStokes::gradient(Vector3d const &p, Vector3d const &q) const
{
  // Vorausberechnungen
  Vector3d diff  = p-q;
  Double   r     = p.r();
  Double   R     = q.r();
  Double   l     = diff.r();
  Double term0   = (R*R+r*r-l*l);
  Double term    = (r+l-R)*(r+l+R);
  Double ln_term = log(term/(4*r*r));
  Double r2      = r*r;
  Double r3      = r2*r;
  Double r4      = r3*r;

  // Ableitungen r,l nach x,y,z
  Vector3d dr = 1/r * p;
  Vector3d dl = 1/l * diff;

  // Ableitungen Stokes nach r,l
  Double dS_dr = -R/r2+6*R*l/r3+1.5*R/r4*term0*(5+3*ln_term)
                 -R/r2*(5+3*ln_term)
                 -3*R/r3*term0*((r+l)/term-1/r);

  Double dS_dl = R/r3*(-2*r3/(l*l)-3*r+5*l+3*l*ln_term
                -3*term0*(l+r)/term);

  // Kettenregel
  return R*(dS_dr*dr + dS_dl*dl);
}

/***********************************************/

Tensor3d KernelStokes::gradientGradient(Vector3d const &p, Vector3d const &q) const
{
  Tensor3d tns;

  // Vorausberechnungen
  Double r       = p.r();
  Double R       = q.r();
  Double l       = (p-q).r();
  Double term0   = (R*R+r*r-l*l);
  Double term    = (r+l-R)*(r+l+R);
  Double ln_term = log(term/(4*r*r));
  Double r2      = r*r;
  Double r3      = r2*r;
  Double r4      = r3*r;
  Double r5      = r4*r;

  // Ableitungen r,l nach x,y,z
  Double dr_dx = p.x()/r;   Double dl_dx = (p.x()-q.x())/l;
  Double dr_dy = p.y()/r;   Double dl_dy = (p.y()-q.y())/l;
  Double dr_dz = p.z()/r;   Double dl_dz = (p.z()-q.z())/l;

  // Zweite Ableitungen r,l nach x,y,z
  Double d2r_dx2 = 1/r-p.x()*p.x()/r3;
  Double d2r_dy2 = 1/r-p.y()*p.y()/r3;
  Double d2r_dz2 = 1/r-p.z()*p.z()/r3;
  Double d2r_dxdy =   -p.x()*p.y()/r3;
  Double d2r_dxdz =   -p.x()*p.z()/r3;
  Double d2r_dydz =   -p.y()*p.z()/r3;

  Double d2l_dx2 = 1/l-(p.x()-q.x())*(p.x()-q.x())/(l*l*l);
  Double d2l_dy2 = 1/l-(p.y()-q.y())*(p.y()-q.y())/(l*l*l);
  Double d2l_dz2 = 1/l-(p.z()-q.z())*(p.z()-q.z())/(l*l*l);
  Double d2l_dxdy =   -(p.x()-q.x())*(p.y()-q.y())/(l*l*l);
  Double d2l_dxdz =   -(p.x()-q.x())*(p.z()-q.z())/(l*l*l);
  Double d2l_dydz =   -(p.y()-q.y())*(p.z()-q.z())/(l*l*l);

  // Ableitungen Stokes nach r,l

  Double dS_dr = -R/r2+6*R*l/r3+1.5*R*term0*(5+3*ln_term)/r4
                 -R*(5+3*ln_term)/r2
                 -3*R*term0*(0.25*term0/r3
                 -0.5*(r-0.5*term0/r+l)/r2)/(r2*(r-0.5*term0/r+l));

  Double dS_dl = R/r3*(-2*r3/(l*l)-3*r+5*l+3*l*ln_term
                -3*term0*(l+r)/term);

  // Zweite Ableitungen Stokes nach r,l
  Double d2S_dr2 = R*(-3/r3-18*l/r4-30*(R*R-l*l)/r5
                     +(15*r2-18*term0)*ln_term/r5
                     +12*(R*R-r*l-l*l)*(R*R-l*l)/(r5*term)
                     +6*term0*(R*R-r*l-l*l)*(r+l)/(r4*term*term)
                     -3*term0*(3*l*l+2*r*l-3*R*R)/(r5*term));

  Double d2S_drdl= R*(6.0/r3 - 15*l/r4 - 9*l*ln_term/r4
                     + 6*(l*(R*R-l*r-l*l)-r2*(l+r))/(r4*term)
                     + 3*term0*(3*l+2*r)/(r4*term)
                     + 6*(r+l)*(r+l)*term0/(r3*term*term));

  Double d2S_dl2 = R/(r3)*(4*r3/(l*l*l)+5+3*ln_term
                     + (12*l*(r+l)-3*term0)/term
                     + 6*(r+l)*(r+l)*term0/(term*term));

  // Kettenregel
  tns.xx() = dS_dr*d2r_dx2  + dS_dl*d2l_dx2
           + d2S_dr2*dr_dx*dr_dx + 2*d2S_drdl*dr_dx*dl_dx + d2S_dl2*dl_dx*dl_dx;

  tns.yy() = dS_dr*d2r_dy2  + dS_dl*d2l_dy2
           + d2S_dr2*dr_dy*dr_dy + 2*d2S_drdl*dr_dy*dl_dy + d2S_dl2*dl_dy*dl_dy;

  tns.zz() = dS_dr*d2r_dz2  + dS_dl*d2l_dz2
           + d2S_dr2*dr_dz*dr_dz + 2*d2S_drdl*dr_dz*dl_dz + d2S_dl2*dl_dz*dl_dz;

  tns.xy() = dS_dr*d2r_dxdy + dS_dl*d2l_dxdy
           + d2S_dr2*dr_dx*dr_dy + d2S_drdl*dr_dx*dl_dy + d2S_drdl*dr_dy*dl_dx + d2S_dl2*dl_dx*dl_dy;

  tns.xz() = dS_dr*d2r_dxdz + dS_dl*d2l_dxdz
           + d2S_dr2*dr_dx*dr_dz + d2S_drdl*dr_dx*dl_dz + d2S_drdl*dr_dz*dl_dx + d2S_dl2*dl_dx*dl_dz;

  tns.yz() = dS_dr*d2r_dydz + dS_dl*d2l_dydz
           + d2S_dr2*dr_dy*dr_dz + d2S_drdl*dr_dy*dl_dz + d2S_drdl*dr_dz*dl_dy + d2S_dl2*dl_dy*dl_dz;

  return R*tns;
}

/***********************************************/

Double KernelStokes::inverseKernel(Vector3d const &p, Vector3d const &q, const Kernel &kernel) const
{
  // anomalies = -dK/dr - 2K/r
  return -kernel.radialDerivative(p,q) - 2*kernel.kernel(p,q)/p.r();;
}

/***********************************************/

Double KernelStokes::inverseKernel(const Time &time, const Vector3d &p, const GravityfieldBase &field) const
{
  // anomalies = -dK/dr - 2K/r
  return -field.radialGradient(time, p) - 2*field.potential(time, p)/p.r();
}

/***********************************************/