1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
/***********************************************/
/**
* @file kernelStokes.cpp
*
* @brief Stokes kernel (gravity anomalies).
* @see Kernel
*
* @author Torsten Mayer-Guerr
* @date 2003-09-20
*
*/
/***********************************************/
#include "base/import.h"
#include "classes/gravityfield/gravityfield.h"
#include "classes/kernel/kernel.h"
#include "classes/kernel/kernelStokes.h"
/***********************************************/
Vector KernelStokes::coefficients(Vector3d const &q, UInt degree) const
{
if(degree==INFINITYDEGREE)
throw(Exception("In KernelStokes::coefficients: INFINITYDEGREE requested"));
Double R = q.r();
Vector k(degree+1);
Double *kn = k.field();
for(UInt n=0; n<=degree; n++)
*kn++ = R * ((n==1) ? (0.0) : (1.0/(n-1.0)) );
return k;
}
/***********************************************/
Vector KernelStokes::inverseCoefficients(Vector3d const &p, UInt degree, Bool interior) const
{
if(degree==INFINITYDEGREE)
throw(Exception("In KernelStokes::inverseCoefficients: INFINITYDEGREE requested"));
Double r = p.r();
Vector k(degree+1);
Double *kn = k.field();
if(interior)
for(UInt n=0; n<=degree; n++)
*kn++ = -(n+2.)/r;
else
for(UInt n=0; n<=degree; n++)
*kn++ = (n-1.)/r;
return k;
}
/***********************************************/
Double KernelStokes::kernel(Vector3d const &p, Vector3d const &q) const
{
Vector3d diff = p-q;
Double r = p.r();
Double R = q.r();
Double l = diff.r();
Double cos_psi = (R*R+r*r-l*l)/(2*R*r);
return R*(2*R/l-3*R*l/(r*r)-R*R/(r*r)*cos_psi*(5+3*log((l+r-R*cos_psi)/(2*r))));
}
/***********************************************/
Double KernelStokes::radialDerivative(Vector3d const &p, Vector3d const &q) const
{
Vector3d diff = p-q;
Double r = p.r();
Double R = q.r();
Double l = diff.r();
Double cos_psi = (R*R+r*r-l*l)/(2*R*r);
Double term0 = (R*R+r*r-l*l);
Double term = (r+l-R)*(r+l+R);
Double ln_term = log(term/(4*r*r));
Double r2 = r*r;
Double r3 = r2*r;
Double r4 = r3*r;
// Ableitungen Stokes nach r,l
// Kettenregel: ds/dr = dS/du*du/dr + dS/dl*dl/dr mit u = r
Double dS_du = R*(6*R*l/r3+1.5*R*term0*(5+3*ln_term)/r4
-R*(5+3*ln_term)/r2
-3*R*term0*(0.25*term0/r3-0.5*(r-0.5*term0/r+l)/r2)/(r2*(r-0.5*term0/r+l)));
Double dS_dl = R*(R/r3*(-2*r3/(l*l)-3*r+5*l+3*l*ln_term
-3*term0*(l+r)/term));
Double dl_dr = (r-R*cos_psi)/l;
Double dS_dr = dS_du+dS_dl*dl_dr;
return dS_dr;
}
/***********************************************/
Vector3d KernelStokes::gradient(Vector3d const &p, Vector3d const &q) const
{
// Vorausberechnungen
Vector3d diff = p-q;
Double r = p.r();
Double R = q.r();
Double l = diff.r();
Double term0 = (R*R+r*r-l*l);
Double term = (r+l-R)*(r+l+R);
Double ln_term = log(term/(4*r*r));
Double r2 = r*r;
Double r3 = r2*r;
Double r4 = r3*r;
// Ableitungen r,l nach x,y,z
Vector3d dr = 1/r * p;
Vector3d dl = 1/l * diff;
// Ableitungen Stokes nach r,l
Double dS_dr = -R/r2+6*R*l/r3+1.5*R/r4*term0*(5+3*ln_term)
-R/r2*(5+3*ln_term)
-3*R/r3*term0*((r+l)/term-1/r);
Double dS_dl = R/r3*(-2*r3/(l*l)-3*r+5*l+3*l*ln_term
-3*term0*(l+r)/term);
// Kettenregel
return R*(dS_dr*dr + dS_dl*dl);
}
/***********************************************/
Tensor3d KernelStokes::gradientGradient(Vector3d const &p, Vector3d const &q) const
{
Tensor3d tns;
// Vorausberechnungen
Double r = p.r();
Double R = q.r();
Double l = (p-q).r();
Double term0 = (R*R+r*r-l*l);
Double term = (r+l-R)*(r+l+R);
Double ln_term = log(term/(4*r*r));
Double r2 = r*r;
Double r3 = r2*r;
Double r4 = r3*r;
Double r5 = r4*r;
// Ableitungen r,l nach x,y,z
Double dr_dx = p.x()/r; Double dl_dx = (p.x()-q.x())/l;
Double dr_dy = p.y()/r; Double dl_dy = (p.y()-q.y())/l;
Double dr_dz = p.z()/r; Double dl_dz = (p.z()-q.z())/l;
// Zweite Ableitungen r,l nach x,y,z
Double d2r_dx2 = 1/r-p.x()*p.x()/r3;
Double d2r_dy2 = 1/r-p.y()*p.y()/r3;
Double d2r_dz2 = 1/r-p.z()*p.z()/r3;
Double d2r_dxdy = -p.x()*p.y()/r3;
Double d2r_dxdz = -p.x()*p.z()/r3;
Double d2r_dydz = -p.y()*p.z()/r3;
Double d2l_dx2 = 1/l-(p.x()-q.x())*(p.x()-q.x())/(l*l*l);
Double d2l_dy2 = 1/l-(p.y()-q.y())*(p.y()-q.y())/(l*l*l);
Double d2l_dz2 = 1/l-(p.z()-q.z())*(p.z()-q.z())/(l*l*l);
Double d2l_dxdy = -(p.x()-q.x())*(p.y()-q.y())/(l*l*l);
Double d2l_dxdz = -(p.x()-q.x())*(p.z()-q.z())/(l*l*l);
Double d2l_dydz = -(p.y()-q.y())*(p.z()-q.z())/(l*l*l);
// Ableitungen Stokes nach r,l
Double dS_dr = -R/r2+6*R*l/r3+1.5*R*term0*(5+3*ln_term)/r4
-R*(5+3*ln_term)/r2
-3*R*term0*(0.25*term0/r3
-0.5*(r-0.5*term0/r+l)/r2)/(r2*(r-0.5*term0/r+l));
Double dS_dl = R/r3*(-2*r3/(l*l)-3*r+5*l+3*l*ln_term
-3*term0*(l+r)/term);
// Zweite Ableitungen Stokes nach r,l
Double d2S_dr2 = R*(-3/r3-18*l/r4-30*(R*R-l*l)/r5
+(15*r2-18*term0)*ln_term/r5
+12*(R*R-r*l-l*l)*(R*R-l*l)/(r5*term)
+6*term0*(R*R-r*l-l*l)*(r+l)/(r4*term*term)
-3*term0*(3*l*l+2*r*l-3*R*R)/(r5*term));
Double d2S_drdl= R*(6.0/r3 - 15*l/r4 - 9*l*ln_term/r4
+ 6*(l*(R*R-l*r-l*l)-r2*(l+r))/(r4*term)
+ 3*term0*(3*l+2*r)/(r4*term)
+ 6*(r+l)*(r+l)*term0/(r3*term*term));
Double d2S_dl2 = R/(r3)*(4*r3/(l*l*l)+5+3*ln_term
+ (12*l*(r+l)-3*term0)/term
+ 6*(r+l)*(r+l)*term0/(term*term));
// Kettenregel
tns.xx() = dS_dr*d2r_dx2 + dS_dl*d2l_dx2
+ d2S_dr2*dr_dx*dr_dx + 2*d2S_drdl*dr_dx*dl_dx + d2S_dl2*dl_dx*dl_dx;
tns.yy() = dS_dr*d2r_dy2 + dS_dl*d2l_dy2
+ d2S_dr2*dr_dy*dr_dy + 2*d2S_drdl*dr_dy*dl_dy + d2S_dl2*dl_dy*dl_dy;
tns.zz() = dS_dr*d2r_dz2 + dS_dl*d2l_dz2
+ d2S_dr2*dr_dz*dr_dz + 2*d2S_drdl*dr_dz*dl_dz + d2S_dl2*dl_dz*dl_dz;
tns.xy() = dS_dr*d2r_dxdy + dS_dl*d2l_dxdy
+ d2S_dr2*dr_dx*dr_dy + d2S_drdl*dr_dx*dl_dy + d2S_drdl*dr_dy*dl_dx + d2S_dl2*dl_dx*dl_dy;
tns.xz() = dS_dr*d2r_dxdz + dS_dl*d2l_dxdz
+ d2S_dr2*dr_dx*dr_dz + d2S_drdl*dr_dx*dl_dz + d2S_drdl*dr_dz*dl_dx + d2S_dl2*dl_dx*dl_dz;
tns.yz() = dS_dr*d2r_dydz + dS_dl*d2l_dydz
+ d2S_dr2*dr_dy*dr_dz + d2S_drdl*dr_dy*dl_dz + d2S_drdl*dr_dz*dl_dy + d2S_dl2*dl_dy*dl_dz;
return R*tns;
}
/***********************************************/
Double KernelStokes::inverseKernel(Vector3d const &p, Vector3d const &q, const Kernel &kernel) const
{
// anomalies = -dK/dr - 2K/r
return -kernel.radialDerivative(p,q) - 2*kernel.kernel(p,q)/p.r();;
}
/***********************************************/
Double KernelStokes::inverseKernel(const Time &time, const Vector3d &p, const GravityfieldBase &field) const
{
// anomalies = -dK/dr - 2K/r
return -field.radialGradient(time, p) - 2*field.potential(time, p)/p.r();
}
/***********************************************/
|