1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
/***********************************************/
/**
* @file normalEquationDesign.cpp
*
* @brief Accumulate normals from observation equations.
* @f[ N = A^TPA,\quad n=A^TPl @f]
* @see NormalEquation
* @see Observation
*
* @author Torsten Mayer-Guerr
* @date 2004-12-10
*
*/
/***********************************************/
#include "base/import.h"
#include "config/config.h"
#include "parallel/parallel.h"
#include "files/fileArcList.h"
#include "classes/observation/observation.h"
#include "classes/normalEquation/normalEquation.h"
#include "classes/normalEquation/normalEquationDesign.h"
/***********************************************/
NormalEquationDesign::NormalEquationDesign(Config &config)
{
try
{
FileName fileNameArcList;
renameDeprecatedConfig(config, "arcList", "inputfileArcList", date2time(2020, 7, 7));
readConfig(config, "observation", observation, Config::MUSTSET, "", "");
readConfig(config, "aprioriSigma", sigma2, Config::DEFAULT, "1.0", "");
readConfig(config, "startIndex", startIndex, Config::DEFAULT, "0", "add this normals at index of total matrix (counting from 0)");
readConfig(config, "inputfileArcList", fileNameArcList, Config::OPTIONAL, "", "to accelerate computation");
if(isCreateSchema(config)) return;
intervals = {0, observation->arcCount()};
if(!fileNameArcList.empty())
{
std::vector<Time> timesInterval;
readFileArcList(fileNameArcList, intervals, timesInterval);
}
sigma2 *= sigma2;
sigma2New = sigma2;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void NormalEquationDesign::parameterNames(std::vector<ParameterName> &names) const
{
try
{
std::vector<ParameterName> baseNames;
observation->parameterName(baseNames);
for(UInt i=0; i<baseNames.size(); i++)
if(!names.at(i+startIndex).combine(baseNames.at(i)))
logWarningOnce<<"Parameter names do not match at index "<<i+startIndex<<": '"<<names.at(i+startIndex).str()<<"' != '"<<baseNames.at(i).str()<<"'"<< Log::endl;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void NormalEquationDesign::init(MatrixDistributed &/*normals*/, UInt rhsCount)
{
try
{
if(rhsCount != observation->rightSideCount())
throw(Exception("number of right hand sides must agree ("+rhsCount%"%i != "s+observation->rightSideCount()%"%i)"s));
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Bool NormalEquationDesign::addNormalEquation(UInt rhsNo, const const_MatrixSlice &x, const const_MatrixSlice &Wz,
MatrixDistributed &normals, Matrix &n, Vector &lPl, UInt &obsCount)
{
try
{
if(!observation->parameterCount())
return TRUE;
const UInt blockStart = normals.index2block(startIndex);
const UInt blockEnd = normals.index2block(startIndex+observation->parameterCount()-1);
for(UInt i=blockStart; i<=blockEnd; i++)
for(UInt k=i; k<=blockEnd; k++)
{
normals.setBlock(i, k);
normals.N(i,k) = (i==k) ? Matrix(normals.blockSize(i), Matrix::SYMMETRIC) : Matrix(normals.blockSize(i), normals.blockSize(k));
}
// compute observation equations
// -----------------------------
sigma2 = sigma2New;
obsCount = 0;
Double ePe = 0;
Double redundancy = 0;
MatrixSlice x0(x.slice(startIndex, rhsNo, observation->parameterCount(), 1));
MatrixSlice Wz0(Wz.row(startIndex, observation->parameterCount()));
logStatus<<"accumulate normals from observation equations"<<Log::endl;
Parallel::forEachInterval(observation->arcCount(), intervals, [&](UInt arcNo)
{
// observation equations
Matrix l, A, B;
observation->observation(arcNo, l, A, B);
if(l.rows()==0)
return;
// if equations are orthogonal transformed
// additional residuals appended to l
Matrix l2;
if(l.rows()>A.rows())
{
l2 = l.row(A.rows(), l.rows()-A.rows());
l = l.row(0, A.rows());
}
// eliminate arc related parameters
if(B.size())
eliminationParameter(B,A,l);
// right hand side
// ---------------
matMult(1/sigma2, A.trans(), l, n);
for(UInt i=0; i<l.columns(); i++)
lPl(i) += quadsum(l.column(i)) + quadsum(l2.column(i))/sigma2;
obsCount += l.rows() + l2.rows();
ePe += (quadsum(l.column(rhsNo) - A*x0) + quadsum(l2.column(rhsNo)))/sigma2;
redundancy += l.rows() - quadsum(A*Wz0)/sigma2;
// accumulate normals
// ------------------
for(UInt i=blockStart; i<=blockEnd; i++)
{
const UInt idxN1 = (normals.blockIndex(i) < startIndex) ? (startIndex-normals.blockIndex(i)) : 0;
const UInt idxA1 = (normals.blockIndex(i) < startIndex) ? 0 : (normals.blockIndex(i)-startIndex);
const UInt cols1 = std::min(normals.blockSize(i)-idxN1, A.columns()-idxA1);
rankKUpdate(1/sigma2, A.column(idxA1, cols1), normals.N(i,i).slice(idxN1, idxN1, cols1, cols1));
for(UInt k=i+1; k<=blockEnd; k++)
{
const UInt idxN2 = (normals.blockIndex(k) < startIndex) ? (startIndex-normals.blockIndex(k)) : 0;
const UInt idxA2 = (normals.blockIndex(k) < startIndex) ? 0 : (normals.blockIndex(k)-startIndex);
const UInt cols2 = std::min(normals.blockSize(k)-idxN1, A.columns()-idxA1);
matMult(1/sigma2, A.column(idxA1, cols1).trans(), A.column(idxA2, cols2), normals.N(i,k).slice(idxN1, idxN2, cols1, cols2));
}
}
}, normals.communicator());
normals.reduceSum(FALSE);
Parallel::reduceSum(n, 0, normals.communicator());
Parallel::reduceSum(lPl, 0, normals.communicator());
Parallel::reduceSum(obsCount, 0, normals.communicator());
UInt ready = 0;
if(quadsum(x0) > 0)
{
Parallel::reduceSum(ePe, 0, normals.communicator());
Parallel::reduceSum(redundancy, 0, normals.communicator());
sigma2New = ePe/redundancy;
ready = (std::fabs(sqrt(sigma2New)-std::sqrt(sigma2))/std::sqrt(sigma2New) < 0.01);
Parallel::broadCast(sigma2New, 0, normals.communicator());
Parallel::broadCast(ready, 0, normals.communicator());
}
return ready;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Vector NormalEquationDesign::contribution(MatrixDistributed &Cov)
{
try
{
logWarningOnce<<"In NormalEquationDesign: contribution is not implemented"<<Log::endl;
return Vector(Cov.dimension());
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|