1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
/***********************************************/
/**
* @file normalEquationRegularizationGeneralized.cpp
*
* @brief Regularization with sum of symmetric matrices.
* @see NormalEquation
*
* @author Andreas Kvas
* @date 2010-02-10
*
*/
/***********************************************/
#include "base/import.h"
#include "config/config.h"
#include "files/fileMatrix.h"
#include "parallel/parallel.h"
#include "classes/normalEquation/normalEquation.h"
#include "classes/normalEquation/normalEquationRegularizationGeneralized.h"
/***********************************************/
NormalEquationRegularizationGeneralized::NormalEquationRegularizationGeneralized(Config &config)
{
try
{
FileName fileNameBias;
readConfig(config, "inputfilePartialCovarianceMatrix", fileNamesCovariance, Config::MUSTSET, "", "symmetric matrix (sum of all matrices must be positive definite)");
readConfig(config, "inputfileBiasMatrix", fileNameBias, Config::OPTIONAL, "", "bias vector (default: zero vector)");
readConfig(config, "aprioriSigma", sigma2, Config::MUSTSET, "1.0", "apriori sigmas for initial iteration (default: 1.0)");
readConfig(config, "startIndex", startIndex, Config::DEFAULT, "0", "regularization of parameters starts at this index (counting from 0)");
if(isCreateSchema(config)) return;
if(sigma2.size() == 1)
sigma2.resize(fileNamesCovariance.size(), sigma2.front());
if(sigma2.size() != fileNamesCovariance.size())
throw(Exception("Number of partial covariance matrices and apriori sigmas do not match ("+fileNamesCovariance.size()%"%i"s+" vs. "+ sigma2.size()%"%i"s+")."));
for(Double &s2 : sigma2)
s2 *= s2;
if(!fileNameBias.empty())
{
readFileMatrix(fileNameBias, bias);
rhsCount = bias.columns();
paraCount = bias.rows();
}
else
{
rhsCount = 1;
paraCount = 0;
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void NormalEquationRegularizationGeneralized::init(MatrixDistributed &normals, UInt rhsCount)
{
try
{
if(Parallel::isMaster(normals.communicator()))
{
Matrix V;
readFileMatrix(fileNamesCovariance.front(), V);
paraCount = V.rows();
}
Parallel::broadCast(paraCount, 0, normals.communicator());
// adjust right hand side
// ----------------------
if(!bias.size())
bias = Matrix(paraCount, rhsCount);
if(bias.columns() != rhsCount)
throw(Exception("Dimension error (right hand side count): "+bias.columns()%"%i != "s+rhsCount%"%i"s));
this->rhsCount = bias.columns();
startBlock = normals.index2block(startIndex);
// index
std::vector<UInt> index(paraCount);
std::iota(index.begin(), index.end(), 0);
// blockIndex
std::vector<UInt> blockIndex = {0, std::min(normals.blockIndex(startBlock+1)-startIndex, paraCount)};
for(UInt i=startBlock+1; blockIndex.back()<paraCount; i++)
blockIndex.push_back(std::min(blockIndex.back() + normals.blockSize(i), paraCount));
// calcRank
auto calcRank = [&](UInt i, UInt k, UInt commSize) {return normals.getCalculateRank()(startBlock+i, startBlock+k, commSize);};
for(const FileName &fileName : fileNamesCovariance)
{
auto &Vi = V.emplace_back(std::vector<UInt>{0, paraCount}, normals.communicator()); // just one block
if(Vi.isMyRank(0, 0))
{
readFileMatrix(fileName, Vi.N(0, 0));
if((Vi.N(0, 0).rows() != paraCount))
throw(Exception("Dimension error of <"+fileName.str()+"> ("+Vi.N(0, 0).rows()%"%i"s+" vs. "+paraCount%"%i"s + " parameters)."));
if(Vi.N(0, 0).getType() != Matrix::SYMMETRIC)
throw(Exception("Matrix <"+fileName.str()+"> is not symmetric."));
fillSymmetric(Vi.N(0, 0));
}
Vi.reorder(index, blockIndex, [&](UInt, UInt, UInt) {return Vi.rank(0, 0);}); // divide into blocks
Vi.reorder(index, blockIndex, calcRank); // distribute blocks
}
Sigma.init(blockIndex, normals.communicator(), calcRank);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Bool NormalEquationRegularizationGeneralized::addNormalEquation(UInt rhsNo, const const_MatrixSlice &x, const const_MatrixSlice &Wz,
MatrixDistributed &normals, Matrix &n, Vector &lPl, UInt &obsCount)
{
try
{
// --- lambda function --------------------------
auto symMatMult = [](const MatrixDistributed N, const_MatrixSliceRef &x) -> Matrix
{
Matrix y(x.rows(), x.columns());
for(UInt i=0; i<N.blockCount(); i++)
for(UInt k=i; k<N.blockCount(); k++)
if(N.isMyRank(i, k))
{
matMult(1.0, N.N(i, k), x.row(N.blockIndex(k), N.blockSize(k)), y.row(N.blockIndex(i), N.blockSize(i)));
if(i != k)
matMult(1.0, N.N(i, k).trans(), x.row(N.blockIndex(i), N.blockSize(i)), y.row(N.blockIndex(k), N.blockSize(k)));
}
Parallel::reduceSum(y, 0, N.communicator());
return y;
};
// ----------------------------------------------
UInt ready = 0;
if(quadsum(x.slice(startIndex, rhsNo, paraCount, 1)) > 0.) // estimate sigmas
{
Matrix Se = symMatMult(Sigma, bias.column(rhsNo) - x.slice(startIndex, rhsNo, paraCount, 1));
Matrix SWz = symMatMult(Sigma, Wz.row(startIndex, paraCount));
Parallel::broadCast(Se, 0, normals.communicator());
Parallel::broadCast(SWz, 0, normals.communicator());
for(UInt j=0; j<V.size(); j++)
{
Matrix VSe = symMatMult(V.at(j), Se);
Matrix VSWz = symMatMult(V.at(j), SWz);
// trace(V*Sigma^-1)
Double r = 0;
for(UInt i=0; i<Sigma.blockCount(); i++)
{
for(UInt k=i+1; k<Sigma.blockCount(); k++)
if(Sigma.isMyRank(i, k))
r += 2 * inner(V.at(j).N(i,k), Sigma.N(i,k));
if(Sigma.isMyRank(i, i))
{
fillSymmetric(V.at(j).N(i,i));
fillSymmetric(Sigma.N(i,i));
r += inner(V.at(j).N(i,i), Sigma.N(i,i));
}
}
Parallel::reduceSum(r, 0, normals.communicator());
if(Parallel::isMaster(normals.communicator()))
{
const Double sigma2Old = sigma2.at(j);
sigma2.at(j) *= inner(Se, VSe)/(r-inner(SWz, VSWz));
ready = ready && (std::fabs(std::sqrt(sigma2.at(j))-std::sqrt(sigma2Old))/std::sqrt(sigma2.at(j)) < 0.01);
}
}
Parallel::broadCast(sigma2, 0, normals.communicator());
Parallel::broadCast(ready, 0, normals.communicator());
}
// accumulate covariance matrix
Sigma.setNull();
for(UInt i=0; i<Sigma.blockCount(); i++)
for(UInt k=i; k<Sigma.blockCount(); k++)
if(Sigma.isMyRank(i, k))
for(UInt j=0; j<V.size(); j++)
axpy(sigma2.at(j), V.at(j).N(i, k), Sigma.N(i, k));
// invert for normal equations
Sigma.cholesky(FALSE);
Sigma.choleskyInverse(FALSE);
Sigma.choleskyProduct(FALSE);
// accumulate right hand side
Matrix Pl = symMatMult(Sigma, bias);
if(Parallel::isMaster(normals.communicator()))
{
axpy(1., Pl, n.row(startIndex, paraCount));
for(UInt i=0; i<lPl.rows(); i++)
lPl += inner(bias.column(i), Pl.column(i));
obsCount += paraCount;
}
// accumulate normals
for(UInt i=0; i<Sigma.blockCount(); i++)
for(UInt k=i; k<Sigma.blockCount(); k++)
{
normals.setBlock(startBlock+i, startBlock+k);
if(Sigma.isMyRank(i, k))
{
const UInt rowStart = startIndex + Sigma.blockIndex(i) - normals.blockIndex(startBlock+i);
const UInt colStart = startIndex + Sigma.blockIndex(k) - normals.blockIndex(startBlock+k);
axpy(1.0, Sigma.N(i, k), normals.N(startBlock+i, startBlock+k).slice(rowStart, colStart, Sigma.blockSize(i), Sigma.blockSize(k)));
}
}
return ready;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
Vector NormalEquationRegularizationGeneralized::contribution(MatrixDistributed &Cov)
{
try
{
Vector contrib(Cov.dimension());
for(UInt i=0; i<Sigma.blockCount(); i++)
{
// diagonal block
if(Sigma.isMyRank(i, i))
{
const UInt rowStart = startIndex + Sigma.blockIndex(i) - Cov.blockIndex(startBlock+i);
const_MatrixSliceRef C = Cov.N(startBlock+i, startBlock+i).slice(rowStart, rowStart, Sigma.blockSize(i), Sigma.blockSize(i));
for(UInt z=0; z<Sigma.blockSize(i); z++)
contrib(startIndex+Sigma.blockIndex(i)+z) += inner(Sigma.N(i, i).slice(0, z, z, 1), C.slice(0, z, z, 1))
+ inner(Sigma.N(i, i).slice(z, z, 1, Sigma.blockSize(i)-z), C.slice(z, z, 1, Sigma.blockSize(i)-z));
}
// other blocks
for(UInt k=i+1; k<Sigma.blockCount(); k++)
if(Sigma.isMyRank(i, k))
{
const UInt rowStart = startIndex + Sigma.blockIndex(i) - Cov.blockIndex(startBlock+i);
const UInt colStart = startIndex + Sigma.blockIndex(k) - Cov.blockIndex(startBlock+k);
const_MatrixSliceRef C = Cov.N(startBlock+i, startBlock+k).slice(rowStart, colStart, Sigma.blockSize(i), Sigma.blockSize(k));
for(UInt z=0; z<Sigma.blockSize(i); z++)
contrib(startIndex+Sigma.blockIndex(i)+z) += inner(Sigma.N(i, k).row(z), C.row(z));
for(UInt s=0; s<Sigma.blockSize(k); s++)
contrib(startIndex+Sigma.blockIndex(k)+s) += inner(Sigma.N(i, k).column(s), C.column(s));
}
}
Parallel::reduceSum(contrib, 0, Cov.communicator());
Parallel::broadCast(contrib, 0, Cov.communicator());
return contrib;
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|