1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
|
/***********************************************/
/**
* @file normalEquationRegularizationGeneralized.h
*
* @brief Regularization with sum of symmetric matrices.
* @see NormalEquation
*
* @author Andreas Kvas
* @date 2010-02-10
*
*/
/***********************************************/
#ifndef __GROOPS_NORMALEQUATIONREGULARIZATIONGENERALIZED__
#define __GROOPS_NORMALEQUATIONREGULARIZATIONGENERALIZED__
// Latex documentation
#ifdef DOCSTRING_NormalEquation
static const char *docstringNormalEquationRegularizationGeneralized = R"(
\subsection{RegularizationGeneralized}
Generalized regularization which is represented by the observation equation
\begin{equation}
\mathbf{x}_0 = \mathbf{I} \mathbf{x} + \mathbf{v}, \mathbf{v} \sim \mathcal{N}(0, \sum_k \sigma^2_k \mathbf{V}_k).
\end{equation}
There are no requirements for partial covariance matrices $\mathbf{V}_k$ except for them being symmetric.
The accumulated covariance matrix $\sum_k \sigma^2_k \mathbf{V}_k$ must be positive definite however.
The variance components $\sigma^2_k$ are estimated during the adjustment process and are assumed to be positive.
All \configFile{inputfilePartialCovarianceMatrix}{matrix} must be of same size
and must match the dimension of \configFile{inputfileBiasMatrix}{matrix}
(if provided, otherwise a zero vector of appropriate dimensions is created).
The parameter \config{aprioriSigma} determines the initial variance factor for the partial covariance matrices. Either one $\sigma_0$ can be
supplied or one for each $\mathbf{V}_k$.
The regularization matrix can be applied to a subset of parameters by adjusting \config{startIndex}.
)";
#endif
/***********************************************/
#include "classes/normalEquation/normalEquation.h"
/***** CLASS ***********************************/
/** @brief Regularization with sum of symmetric matrices.
* @ingroup normalEquationGroup
* @see NormalEquation */
class NormalEquationRegularizationGeneralized : public NormalEquationBase
{
std::vector<FileName> fileNamesCovariance;
Matrix bias;
UInt startIndex, startBlock;
UInt paraCount, rhsCount;
std::vector<Double> sigma2;
MatrixDistributed Sigma; // = sum_i sigma2_i * V_i
std::vector<MatrixDistributed> V;
public:
NormalEquationRegularizationGeneralized(Config &config);
UInt rightHandSideCount() const override {return rhsCount;}
UInt parameterCount() const override {return paraCount + startIndex;}
void parameterNames(std::vector<ParameterName> &/*names*/) const override {}
void init(MatrixDistributed &normals, UInt rhsCount) override;
Bool addNormalEquation(UInt rhsNo, const const_MatrixSlice &x, const const_MatrixSlice &Wz,
MatrixDistributed &normals, Matrix &n, Vector &lPl, UInt &obsCount) override;
Vector contribution(MatrixDistributed &Cov) override;
std::vector<Double> varianceComponentFactors() const override {return sigma2;}
};
/***********************************************/
#endif
|