File: observationGradiometer.cpp

package info (click to toggle)
groops 0%2Bgit20250907%2Bds-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 11,140 kB
  • sloc: cpp: 135,607; fortran: 1,603; makefile: 20
file content (243 lines) | stat: -rw-r--r-- 9,852 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/***********************************************/
/**
* @file observationGradiometer.cpp
*
* @brief GOCE gradiometer observations.
*
* @author Torsten Mayer-Guerr
* @date 2011-05-14
*
*/
/***********************************************/

#include "base/import.h"
#include "files/fileMatrix.h"
#include "files/fileInstrument.h"
#include "classes/earthRotation/earthRotation.h"
#include "classes/tides/tides.h"
#include "classes/gravityfield/gravityfield.h"
#include "classes/parametrizationGravity/parametrizationGravity.h"
#include "classes/parametrizationTemporal/parametrizationTemporal.h"
#include "misc/observation/observationMisc.h"
#include "classes/observation/observation.h"
#include "classes/observation/observationGradiometer.h"

/***********************************************/

ObservationGradiometer::ObservationGradiometer(Config &config)
{
  try
  {
    FileName  orbitName, starCameraName, covarianceName;
    FileName  sigmaName, covName;

    renameDeprecatedConfig(config, "representation", "parametrizationGravity", date2time(2020, 6, 3));

    readConfig(config, "rightHandSide",          rhs,             Config::MUSTSET,  "",    "input for the observation vector");
    readConfig(config, "inputfileOrbit",         orbitName,       Config::MUSTSET,  "",    "");
    readConfig(config, "inputfileStarCamera",    starCameraName,  Config::MUSTSET,  "",    "");
    readConfig(config, "earthRotation",          earthRotation,   Config::MUSTSET,  "",    "");
    readConfig(config, "ephemerides",            ephemerides,     Config::OPTIONAL, "jpl", "");
    readConfig(config, "parametrizationGravity", parametrization, Config::MUSTSET,  "",    "");
    readConfig(config, "parametrizationBias",    sggBias,         Config::DEFAULT,  "",    "per arc");
    readConfig(config, "useXX",                  useXX,           Config::DEFAULT,  "1",   "");
    readConfig(config, "useYY",                  useYY,           Config::DEFAULT,  "1",   "");
    readConfig(config, "useZZ",                  useZZ,           Config::DEFAULT,  "1",   "");
    readConfig(config, "useXY",                  useXY,           Config::DEFAULT,  "0",   "");
    readConfig(config, "useXZ",                  useXZ,           Config::DEFAULT,  "1",   "");
    readConfig(config, "useYZ",                  useYZ,           Config::DEFAULT,  "0",   "");
    if(readConfigSequence(config, "covarianceSgg", Config::MUSTSET, "", ""))
    {
      readConfig(config, "sigma",                       sigma,     Config::DEFAULT,  "1", "general variance factor");
      readConfig(config, "inputfileSigmasPerArc",       sigmaName, Config::OPTIONAL, "",  "different accuaries for each arc (multplicated with sigma)");
      readConfig(config, "inputfileCovarianceFunction", covName,   Config::OPTIONAL, "",  "covariance function in time");
      endSequence(config);
    }
    if(isCreateSchema(config)) return;

    orbitFile.open(orbitName);
    starCameraFile.open(starCameraName);

    InstrumentFile::checkArcCount({orbitFile, starCameraFile});
    for(UInt rhsNo=0; rhsNo<rhs.size(); rhsNo++)
    {
      InstrumentFile::checkArcCount({orbitFile, *rhs.at(rhsNo)->gradiometerFile});
      for(UInt k=0; k<rhs.at(rhsNo)->referenceFile.size(); k++)
        InstrumentFile::checkArcCount({orbitFile, *rhs.at(rhsNo)->referenceFile.at(k)});
    }

    componentCount = useXX + useXY + useXZ + useYY + useYZ + useZZ;

    if(!sigmaName.empty())
      readFileMatrix(sigmaName, sigmaArc);

    // covariance matrix from covariance function
    // ------------------------------------------
    if(!covName.empty())
    {
      Matrix cov;
      readFileMatrix(covName, cov);

      CovCholesky = Matrix(componentCount*cov.rows(), Matrix::SYMMETRIC, Matrix::UPPER);

      for(UInt i=0; i<cov.rows(); i++)
        for(UInt k=i; k<cov.rows(); k++)
        {
          UInt idx = 0;
          if(useXX) {CovCholesky(componentCount*i+idx, componentCount*k+idx) = cov(k-i, 1+0); idx++;}
          if(useXY) {CovCholesky(componentCount*i+idx, componentCount*k+idx) = cov(k-i, 1+1); idx++;}
          if(useXZ) {CovCholesky(componentCount*i+idx, componentCount*k+idx) = cov(k-i, 1+2); idx++;}
          if(useYY) {CovCholesky(componentCount*i+idx, componentCount*k+idx) = cov(k-i, 1+3); idx++;}
          if(useYZ) {CovCholesky(componentCount*i+idx, componentCount*k+idx) = cov(k-i, 1+4); idx++;}
          if(useZZ) {CovCholesky(componentCount*i+idx, componentCount*k+idx) = cov(k-i, 1+5); idx++;}
        }

      cholesky(CovCholesky);
    }
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/************************************************************************/

void ObservationGradiometer::observation(UInt arcNo, Matrix &l, Matrix &A, Matrix &B)
{
  try
  {
    OrbitArc      orbit      = orbitFile.readArc(arcNo);
    StarCameraArc starCamera = starCameraFile.readArc(arcNo);
    const UInt    epochCount = orbit.size();
    const UInt    rhsCount   = rhs.size();
    Arc::checkSynchronized({orbit, starCamera});

    // earth rotation
    // --------------
    std::vector<Rotary3d> rotEarth(epochCount);
    for(UInt i=0; i<epochCount; i++)
      rotEarth.at(i) = earthRotation->rotaryMatrix(orbit.at(i).time);

    // reduced observations
    // ---------------------
    l = Matrix(componentCount*epochCount, rhsCount);

    for(UInt rhsNo=0; rhsNo<rhsCount; rhsNo++)
    {
      GradiometerArc gradiometer = rhs.at(rhsNo)->gradiometerFile->readArc(arcNo);
      Arc::checkSynchronized({orbit, gradiometer});

      std::vector<GradiometerArc> reference(rhs.at(rhsNo)->referenceFile.size());
      for(UInt k=0; k<rhs.at(rhsNo)->referenceFile.size(); k++)
      {
        reference.at(k) = rhs.at(rhsNo)->referenceFile.at(k)->readArc(arcNo);
        Arc::checkSynchronized({orbit, reference.at(k)});
      }

      for(UInt i=0; i<epochCount; i++)
      {
        const Time     time     = orbit.at(i).time;
        const Vector3d posEarth = rotEarth.at(i).rotate(orbit.at(i).position);
        // referencefield + tides
        const Tensor3d tns = rhs.at(rhsNo)->referencefield->gravityGradient(time, posEarth)
                           + rhs.at(rhsNo)->tides->gradient(time, posEarth, rotEarth.at(i), earthRotation, ephemerides);
        // observed minus computed
        Tensor3d gravityGradient = gradiometer.at(i).gravityGradient - starCamera.at(i).rotary.inverseRotate(rotEarth.at(i).inverseRotate(tns));
        // gradients from files
        for(UInt k=0; k<reference.size(); k++)
          gravityGradient -= reference.at(k).at(i).gravityGradient;

        UInt idx = 0;
        if(useXX) l(componentCount*i+idx++, rhsNo) = gravityGradient.xx();
        if(useXY) l(componentCount*i+idx++, rhsNo) = gravityGradient.xy();
        if(useXZ) l(componentCount*i+idx++, rhsNo) = gravityGradient.xz();
        if(useYY) l(componentCount*i+idx++, rhsNo) = gravityGradient.yy();
        if(useYZ) l(componentCount*i+idx++, rhsNo) = gravityGradient.yz();
        if(useZZ) l(componentCount*i+idx++, rhsNo) = gravityGradient.zz();
      }
    }

    // rotary matrix from TRF to satellite system
    // ------------------------------------------
    Matrix rotGRF(componentCount*epochCount, 5*epochCount);
    for(UInt i=0; i<epochCount; i++)
    {
      Matrix rot = inverse(rotEarth.at(i) * starCamera.at(i).rotary).matrix();
      MatrixSlice R(rotGRF.slice(componentCount*i, 5*i, componentCount,5));

      // One row of the rotary matrix for one gradiometer component (e.g. Txy: i=0, k=1)
      auto rotationLine = [&](UInt i, UInt k, UInt row)
      {
        R(row, 0) = rot(i,0)*rot(k,0) - rot(i,2)*rot(k,2);
        R(row, 1) = rot(i,0)*rot(k,1) + rot(i,1)*rot(k,0);
        R(row, 2) = rot(i,0)*rot(k,2) + rot(i,2)*rot(k,0);
        R(row, 3) = rot(i,1)*rot(k,1) - rot(i,2)*rot(k,2);
        R(row, 4) = rot(i,1)*rot(k,2) + rot(i,2)*rot(k,1);
      };

      UInt idx = 0;
      if(useXX) rotationLine(0, 0, idx++);
      if(useXY) rotationLine(0, 1, idx++);
      if(useXZ) rotationLine(0, 2, idx++);
      if(useYY) rotationLine(1, 1, idx++);
      if(useYZ) rotationLine(1, 2, idx++);
      if(useZZ) rotationLine(2, 2, idx++);
    }

    // gradiometer bias for each component
    // -----------------------------------
    B = Matrix();
    const std::vector<Time> times = orbit.times();
    sggBias->setInterval(times.front(), times.back()+medianSampling(times), TRUE);
    if(sggBias->parameterCount())
    {
      B = Matrix(componentCount*epochCount, componentCount*sggBias->parameterCount());
      const Matrix I = identityMatrix(componentCount);
      for(UInt i=0; i<epochCount; i++)
        sggBias->designMatrix(times.at(i), I, B.row(componentCount*i, componentCount));
    }

    // apply sigmas
    // ------------
    Double factor = 1./sigma;
    if(sigmaArc.size())
      factor *= 1./sigmaArc(arcNo);
    if(factor!=1.)
    {
      rotGRF *= factor;
      l      *= factor;
      if(B.size())
        B *= factor;
    }

    // decorrelation
    // -------------
    if(CovCholesky.size())
    {
      if(CovCholesky.rows()<l.rows())
        throw(Exception("covariance matrix to small"));
      const_MatrixSlice W(CovCholesky.slice(0,0,l.rows(),l.rows()).trans());
      triangularSolve(1., W, rotGRF);
      triangularSolve(1., W, l);
      if(B.size())
        triangularSolve(1.,W, B);
    }

    // Design matrix A
    // ---------------
    A = Matrix(componentCount*epochCount, parameterCount());
    Matrix tns(6, parametrization->parameterCount());
    for(UInt i=0; i<epochCount; i++)
    {
      parametrization->gravityGradient(orbit.at(i).time, rotEarth.at(i).rotate(orbit.at(i).position), tns);
      matMult(1., rotGRF.column(5*i,5), tns.row(0,5), A.column(0,tns.columns()));
    }
  }
  catch(std::exception &e)
  {
    GROOPS_RETHROW(e)
  }
}

/***********************************************/