1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
/***********************************************/
/**
* @file observationGradiometer.cpp
*
* @brief GOCE gradiometer observations.
*
* @author Torsten Mayer-Guerr
* @date 2011-05-14
*
*/
/***********************************************/
#include "base/import.h"
#include "files/fileMatrix.h"
#include "files/fileInstrument.h"
#include "classes/earthRotation/earthRotation.h"
#include "classes/tides/tides.h"
#include "classes/gravityfield/gravityfield.h"
#include "classes/parametrizationGravity/parametrizationGravity.h"
#include "classes/parametrizationTemporal/parametrizationTemporal.h"
#include "misc/observation/observationMisc.h"
#include "classes/observation/observation.h"
#include "classes/observation/observationGradiometer.h"
/***********************************************/
ObservationGradiometer::ObservationGradiometer(Config &config)
{
try
{
FileName orbitName, starCameraName, covarianceName;
FileName sigmaName, covName;
renameDeprecatedConfig(config, "representation", "parametrizationGravity", date2time(2020, 6, 3));
readConfig(config, "rightHandSide", rhs, Config::MUSTSET, "", "input for the observation vector");
readConfig(config, "inputfileOrbit", orbitName, Config::MUSTSET, "", "");
readConfig(config, "inputfileStarCamera", starCameraName, Config::MUSTSET, "", "");
readConfig(config, "earthRotation", earthRotation, Config::MUSTSET, "", "");
readConfig(config, "ephemerides", ephemerides, Config::OPTIONAL, "jpl", "");
readConfig(config, "parametrizationGravity", parametrization, Config::MUSTSET, "", "");
readConfig(config, "parametrizationBias", sggBias, Config::DEFAULT, "", "per arc");
readConfig(config, "useXX", useXX, Config::DEFAULT, "1", "");
readConfig(config, "useYY", useYY, Config::DEFAULT, "1", "");
readConfig(config, "useZZ", useZZ, Config::DEFAULT, "1", "");
readConfig(config, "useXY", useXY, Config::DEFAULT, "0", "");
readConfig(config, "useXZ", useXZ, Config::DEFAULT, "1", "");
readConfig(config, "useYZ", useYZ, Config::DEFAULT, "0", "");
if(readConfigSequence(config, "covarianceSgg", Config::MUSTSET, "", ""))
{
readConfig(config, "sigma", sigma, Config::DEFAULT, "1", "general variance factor");
readConfig(config, "inputfileSigmasPerArc", sigmaName, Config::OPTIONAL, "", "different accuaries for each arc (multplicated with sigma)");
readConfig(config, "inputfileCovarianceFunction", covName, Config::OPTIONAL, "", "covariance function in time");
endSequence(config);
}
if(isCreateSchema(config)) return;
orbitFile.open(orbitName);
starCameraFile.open(starCameraName);
InstrumentFile::checkArcCount({orbitFile, starCameraFile});
for(UInt rhsNo=0; rhsNo<rhs.size(); rhsNo++)
{
InstrumentFile::checkArcCount({orbitFile, *rhs.at(rhsNo)->gradiometerFile});
for(UInt k=0; k<rhs.at(rhsNo)->referenceFile.size(); k++)
InstrumentFile::checkArcCount({orbitFile, *rhs.at(rhsNo)->referenceFile.at(k)});
}
componentCount = useXX + useXY + useXZ + useYY + useYZ + useZZ;
if(!sigmaName.empty())
readFileMatrix(sigmaName, sigmaArc);
// covariance matrix from covariance function
// ------------------------------------------
if(!covName.empty())
{
Matrix cov;
readFileMatrix(covName, cov);
CovCholesky = Matrix(componentCount*cov.rows(), Matrix::SYMMETRIC, Matrix::UPPER);
for(UInt i=0; i<cov.rows(); i++)
for(UInt k=i; k<cov.rows(); k++)
{
UInt idx = 0;
if(useXX) {CovCholesky(componentCount*i+idx, componentCount*k+idx) = cov(k-i, 1+0); idx++;}
if(useXY) {CovCholesky(componentCount*i+idx, componentCount*k+idx) = cov(k-i, 1+1); idx++;}
if(useXZ) {CovCholesky(componentCount*i+idx, componentCount*k+idx) = cov(k-i, 1+2); idx++;}
if(useYY) {CovCholesky(componentCount*i+idx, componentCount*k+idx) = cov(k-i, 1+3); idx++;}
if(useYZ) {CovCholesky(componentCount*i+idx, componentCount*k+idx) = cov(k-i, 1+4); idx++;}
if(useZZ) {CovCholesky(componentCount*i+idx, componentCount*k+idx) = cov(k-i, 1+5); idx++;}
}
cholesky(CovCholesky);
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/************************************************************************/
void ObservationGradiometer::observation(UInt arcNo, Matrix &l, Matrix &A, Matrix &B)
{
try
{
OrbitArc orbit = orbitFile.readArc(arcNo);
StarCameraArc starCamera = starCameraFile.readArc(arcNo);
const UInt epochCount = orbit.size();
const UInt rhsCount = rhs.size();
Arc::checkSynchronized({orbit, starCamera});
// earth rotation
// --------------
std::vector<Rotary3d> rotEarth(epochCount);
for(UInt i=0; i<epochCount; i++)
rotEarth.at(i) = earthRotation->rotaryMatrix(orbit.at(i).time);
// reduced observations
// ---------------------
l = Matrix(componentCount*epochCount, rhsCount);
for(UInt rhsNo=0; rhsNo<rhsCount; rhsNo++)
{
GradiometerArc gradiometer = rhs.at(rhsNo)->gradiometerFile->readArc(arcNo);
Arc::checkSynchronized({orbit, gradiometer});
std::vector<GradiometerArc> reference(rhs.at(rhsNo)->referenceFile.size());
for(UInt k=0; k<rhs.at(rhsNo)->referenceFile.size(); k++)
{
reference.at(k) = rhs.at(rhsNo)->referenceFile.at(k)->readArc(arcNo);
Arc::checkSynchronized({orbit, reference.at(k)});
}
for(UInt i=0; i<epochCount; i++)
{
const Time time = orbit.at(i).time;
const Vector3d posEarth = rotEarth.at(i).rotate(orbit.at(i).position);
// referencefield + tides
const Tensor3d tns = rhs.at(rhsNo)->referencefield->gravityGradient(time, posEarth)
+ rhs.at(rhsNo)->tides->gradient(time, posEarth, rotEarth.at(i), earthRotation, ephemerides);
// observed minus computed
Tensor3d gravityGradient = gradiometer.at(i).gravityGradient - starCamera.at(i).rotary.inverseRotate(rotEarth.at(i).inverseRotate(tns));
// gradients from files
for(UInt k=0; k<reference.size(); k++)
gravityGradient -= reference.at(k).at(i).gravityGradient;
UInt idx = 0;
if(useXX) l(componentCount*i+idx++, rhsNo) = gravityGradient.xx();
if(useXY) l(componentCount*i+idx++, rhsNo) = gravityGradient.xy();
if(useXZ) l(componentCount*i+idx++, rhsNo) = gravityGradient.xz();
if(useYY) l(componentCount*i+idx++, rhsNo) = gravityGradient.yy();
if(useYZ) l(componentCount*i+idx++, rhsNo) = gravityGradient.yz();
if(useZZ) l(componentCount*i+idx++, rhsNo) = gravityGradient.zz();
}
}
// rotary matrix from TRF to satellite system
// ------------------------------------------
Matrix rotGRF(componentCount*epochCount, 5*epochCount);
for(UInt i=0; i<epochCount; i++)
{
Matrix rot = inverse(rotEarth.at(i) * starCamera.at(i).rotary).matrix();
MatrixSlice R(rotGRF.slice(componentCount*i, 5*i, componentCount,5));
// One row of the rotary matrix for one gradiometer component (e.g. Txy: i=0, k=1)
auto rotationLine = [&](UInt i, UInt k, UInt row)
{
R(row, 0) = rot(i,0)*rot(k,0) - rot(i,2)*rot(k,2);
R(row, 1) = rot(i,0)*rot(k,1) + rot(i,1)*rot(k,0);
R(row, 2) = rot(i,0)*rot(k,2) + rot(i,2)*rot(k,0);
R(row, 3) = rot(i,1)*rot(k,1) - rot(i,2)*rot(k,2);
R(row, 4) = rot(i,1)*rot(k,2) + rot(i,2)*rot(k,1);
};
UInt idx = 0;
if(useXX) rotationLine(0, 0, idx++);
if(useXY) rotationLine(0, 1, idx++);
if(useXZ) rotationLine(0, 2, idx++);
if(useYY) rotationLine(1, 1, idx++);
if(useYZ) rotationLine(1, 2, idx++);
if(useZZ) rotationLine(2, 2, idx++);
}
// gradiometer bias for each component
// -----------------------------------
B = Matrix();
const std::vector<Time> times = orbit.times();
sggBias->setInterval(times.front(), times.back()+medianSampling(times), TRUE);
if(sggBias->parameterCount())
{
B = Matrix(componentCount*epochCount, componentCount*sggBias->parameterCount());
const Matrix I = identityMatrix(componentCount);
for(UInt i=0; i<epochCount; i++)
sggBias->designMatrix(times.at(i), I, B.row(componentCount*i, componentCount));
}
// apply sigmas
// ------------
Double factor = 1./sigma;
if(sigmaArc.size())
factor *= 1./sigmaArc(arcNo);
if(factor!=1.)
{
rotGRF *= factor;
l *= factor;
if(B.size())
B *= factor;
}
// decorrelation
// -------------
if(CovCholesky.size())
{
if(CovCholesky.rows()<l.rows())
throw(Exception("covariance matrix to small"));
const_MatrixSlice W(CovCholesky.slice(0,0,l.rows(),l.rows()).trans());
triangularSolve(1., W, rotGRF);
triangularSolve(1., W, l);
if(B.size())
triangularSolve(1.,W, B);
}
// Design matrix A
// ---------------
A = Matrix(componentCount*epochCount, parameterCount());
Matrix tns(6, parametrization->parameterCount());
for(UInt i=0; i<epochCount; i++)
{
parametrization->gravityGradient(orbit.at(i).time, rotEarth.at(i).rotate(orbit.at(i).position), tns);
matMult(1., rotGRF.column(5*i,5), tns.row(0,5), A.column(0,tns.columns()));
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|