1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
/***********************************************/
/**
* @file observationPodEnergy.cpp
*
* @brief Precise Orbit Data (POD) observations (Energy integral).
*
* @author Torsten Mayer-Guerr
* @date 2006-02-02
*
*/
/***********************************************/
#include "base/import.h"
#include "parallel/parallel.h"
#include "files/fileInstrument.h"
#include "files/fileSatelliteModel.h"
#include "classes/earthRotation/earthRotation.h"
#include "classes/parametrizationGravity/parametrizationGravity.h"
#include "classes/observation/observation.h"
#include "misc/observation/observationMisc.h"
#include "misc/observation/covariancePod.h"
#include "classes/observation/observationPodEnergy.h"
/***********************************************/
ObservationPodEnergy::ObservationPodEnergy(Config &config)
{
try
{
FileName fileNameSatellite;
FileName orbitName, starCameraName;
renameDeprecatedConfig(config, "satelliteModel", "inputfileSatelliteModel", date2time(2020, 8, 19));
renameDeprecatedConfig(config, "representation", "parametrizationGravity", date2time(2020, 6, 3));
readConfig(config, "inputfileSatelliteModel", fileNameSatellite, Config::OPTIONAL, "{groopsDataDir}/satelliteModel/", "satellite macro model");
readConfig(config, "rightHandSide", rhs, Config::MUSTSET, "", "input for the reduced observation vector");
readConfig(config, "inputfileOrbit", orbitName, Config::MUSTSET, "", "used to evaluate the observation equations, not used as observations");
readConfig(config, "inputfileStarCamera", starCameraName, Config::MUSTSET, "", "");
readConfig(config, "earthRotation", earthRotation, Config::MUSTSET, "", "");
readConfig(config, "ephemerides", ephemerides, Config::OPTIONAL, "jpl", "");
readConfig(config, "parametrizationGravity", parametrization, Config::MUSTSET, "", "gravity field parametrization (potential)");
readConfig(config, "parametrizationBias", bias, Config::MUSTSET, "", "unknown total energy per arc");
readConfig(config, "interpolationDegree", interpolationDegree, Config::DEFAULT, "8", "orbit differentation by polynomial approximation of degree n");
readConfig(config, "integrationDegree", integrationDegree, Config::DEFAULT, "7", "integration of forces by polynomial approximation of degree n");
readConfig(config, "covariancePod", covPod, Config::OPTIONAL, "", "covariance matrix of kinematic orbits");
if(isCreateSchema(config)) return;
if(interpolationDegree%2 != 0)
throw(Exception("polnomial degree for interpolation must be even."));
if(!fileNameSatellite.empty())
readFileSatelliteModel(fileNameSatellite, satellite);
// test instrument files
// ---------------------
orbitFile.open(orbitName);
starCameraFile.open(starCameraName);
InstrumentFile::checkArcCount({orbitFile, starCameraFile});
for(UInt j=0; j<rhs.size(); j++)
InstrumentFile::checkArcCount({orbitFile, *rhs.at(j)->orbitFile, *rhs.at(j)->accelerometerFile});
// orbit differentation coefficients (position -> velocity)
Matrix P(interpolationDegree+1, interpolationDegree+1);
for(UInt i=0; i<=interpolationDegree; i++)
for(UInt n=0; n<=interpolationDegree; n++)
P(n,i) = ((n==0) ? 1.0 : std::pow((static_cast<Double>(i)-interpolationDegree/2), n));
coeff = Vector(interpolationDegree+1);
coeff(1) = 1.0;
solveInPlace(P, coeff);
// polynomial integration matrix
integrationMatrix = Matrix(integrationDegree+1, integrationDegree+1);
for(UInt i=0; i<integrationMatrix.rows(); i++)
{
integrationMatrix(0,i) = 1.0;
for(UInt n=1; n<integrationMatrix.columns(); n++)
integrationMatrix(n,i) = (i-integrationDegree/2.) * integrationMatrix(n-1,i);
}
inverse(integrationMatrix);
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
void ObservationPodEnergy::observation(UInt arcNo, Matrix &l, Matrix &A, Matrix &B)
{
try
{
OrbitArc orbit = orbitFile.readArc(arcNo);
StarCameraArc starCamera = starCameraFile.readArc(arcNo);
UInt rhsCount = rhs.size();
UInt posCount = orbit.size();
UInt obsCount = posCount-interpolationDegree;
UInt half = interpolationDegree/2;
Double dt = (orbit.at(half+1).time - orbit.at(half).time).seconds();
Arc::checkSynchronized({orbit, starCamera});
// calculate earthrotation
// -----------------------
std::vector<Rotary3d> rotEarth(obsCount);
std::vector<Vector3d> rotAxis(obsCount);
std::vector<Vector3d> rotAxisDot(obsCount);
for(UInt k=0; k<obsCount; k++)
{
const Time time = orbit.at(k+half).time;
rotEarth.at(k) = earthRotation->rotaryMatrix(time);
rotAxis.at(k) = earthRotation->rotaryAxis(time);
rotAxisDot.at(k) = earthRotation->rotaryAxisDerivate(time);
}
// position + velocity
// -------------------
std::vector<std::vector<Vector3d>> position(rhsCount);
std::vector<std::vector<Vector3d>> velocity(rhsCount);
std::vector<std::vector<Vector3d>> velocityEarth(rhsCount);
for(UInt j=0; j<rhsCount; j++)
{
OrbitArc orbit = rhs.at(j)->orbitFile->readArc(arcNo);
position.at(j).resize(obsCount);
velocity.at(j).resize(obsCount);
velocityEarth.at(j).resize(obsCount);
for(UInt k=0; k<obsCount; k++)
{
position.at(j).at(k) = orbit.at(k+half).position;
for(UInt i=0; i<coeff.rows(); i++)
velocity.at(j).at(k) += (coeff(i)/dt) * orbit.at(k+i).position;
// Earth fixed velocity in spaced fixed coordinates
velocityEarth.at(j).at(k) = velocity.at(j).at(k) - crossProduct(rotAxis.at(k), position.at(j).at(k));
}
}
// reference acceleration
// ----------------------
Matrix integrand(obsCount, rhsCount);
for(UInt j=0; j<rhsCount; j++)
{
AccelerometerArc accl = rhs.at(j)->accelerometerFile->readArc(arcNo);
for(UInt k=0; k<obsCount; k++)
{
Vector3d g = rhs.at(j)->forces->acceleration(satellite, orbit.at(k+half).time, orbit.at(k+half).position, orbit.at(k+half).velocity,
starCamera.at(k+half).rotary, rotEarth.at(k), earthRotation, ephemerides);
g = rotEarth.at(k).inverseRotate(g); // rotation into CRF
if(accl.size()!=0)
g += starCamera.at(k+half).rotary.rotate(accl.at(k+half).acceleration); // accelerometer
integrand(k,j) = inner(g, velocityEarth.at(j).at(k))
- inner(crossProduct(rotAxisDot.at(k), position.at(j).at(k)), velocity.at(j).at(k));
}
}
// reduced observations
// --------------------
l = Matrix(obsCount, rhsCount);
for(UInt j=0; j<rhsCount; j++)
{
const Double l0 = 0.5 * velocity.at(j).at(0).quadsum() - inner(velocity.at(j).at(0), crossProduct(rotAxis.at(0), position.at(j).at(0)));
for(UInt k=1; k<obsCount; k++)
l(k,j) = 0.5 * velocity.at(j).at(k).quadsum() - inner(velocity.at(j).at(k), crossProduct(rotAxis.at(k), position.at(j).at(k))) - l0;
}
// reduce integral
// ---------------
Matrix integral(integrand.rows(), integrand.columns());
Vector integralFactors;
for(UInt i=1; i<integrand.rows(); i++)
{
const UInt idx = std::min(std::max(i, integrationDegree/2)-integrationDegree/2, integrand.rows()-integrationDegree-1);
if((i<=integrationDegree/2) || (i>=integrand.rows()-(integrationDegree+1)/2))
{
integralFactors = Vector(integrationDegree+1);
const Double tau1 = i-idx-integrationDegree/2.-1;
const Double tau2 = i-idx-integrationDegree/2.;
for(UInt n=0; n<integralFactors.rows(); n++)
axpy(dt/(n+1)*(std::pow(tau2, n+1)-std::pow(tau1, n+1)), integrationMatrix.column(n), integralFactors);
}
integral.row(i) += integral.row(i-1);
matMult(-1., integralFactors.trans(), integrand.row(idx, integralFactors.rows()), integral.row(i));
}
l -= integral;
// arc related parameters (energy constant)
// ----------------------------------------
B = Matrix();
const std::vector<Time> times = orbit.times();
bias->setInterval(times.front(), times.back()+medianSampling(times), TRUE);
if(bias->parameterCount())
{
B = Matrix(obsCount, bias->parameterCount());
for(UInt i=0; i<obsCount; i++)
copy(bias->factors(orbit.at(i+half).time).trans(), B.row(i));
}
// Design matrix A (gravitational potential)
// -----------------------------------------
A = Matrix(obsCount, parametrization->parameterCount());
for(UInt k=0; k<obsCount; k++)
parametrization->potential(orbit.at(k+half).time, rotEarth.at(k).rotate(orbit.at(k+half).position), A.row(k));
// decorrelation
// -------------
if(covPod)
{
// linearized variance propagation
Matrix D(obsCount, 3*posCount);
for(UInt k=0; k<obsCount; k++)
for(UInt i=0; i<coeff.rows(); i++)
{
D(k,3*(i+k)+0) = (coeff(i)/dt) * velocity.at(0).at(k).x();
D(k,3*(i+k)+1) = (coeff(i)/dt) * velocity.at(0).at(k).y();
D(k,3*(i+k)+2) = (coeff(i)/dt) * velocity.at(0).at(k).z();
}
Matrix C = covPod->covariance(arcNo, orbit);
Matrix DCD = D * C * D.trans();
DCD.setType(Matrix::SYMMETRIC);
cholesky(DCD);
// apply Cholesky matrix
triangularSolve(1., DCD.trans(), A);
triangularSolve(1., DCD.trans(), l);
if(B.size()!=0)
triangularSolve(1., DCD.trans(), B);
}
}
catch(std::exception &e)
{
GROOPS_RETHROW(e)
}
}
/***********************************************/
|